diff options
Diffstat (limited to 'nerv/layer/gru.lua')
-rw-r--r-- | nerv/layer/gru.lua | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/nerv/layer/gru.lua b/nerv/layer/gru.lua new file mode 100644 index 0000000..2162e28 --- /dev/null +++ b/nerv/layer/gru.lua @@ -0,0 +1,128 @@ +local GRULayer = nerv.class('nerv.GRULayer', 'nerv.Layer') + +function GRULayer:__init(id, global_conf, layer_conf) + -- input1:x + -- input2:h + -- input3:c (h^~) + self.id = id + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.gconf = global_conf + + if self.dim_in[2] ~= self.dim_out[1] then + nerv.error("dim_in[2](%d) mismatch with dim_out[1](%d)", + self.dim_in[2], self.dim_out[1]) + end + + -- prepare a DAGLayer to hold the lstm structure + local pr = layer_conf.pr + if pr == nil then + pr = nerv.ParamRepo() + end + + local function ap(str) + return self.id .. '.' .. str + end + local din1, din2 = self.dim_in[1], self.dim_in[2] + local dout1 = self.dim_out[1] + local layers = { + ["nerv.CombinerLayer"] = { + [ap("inputXDup")] = {{}, {dim_in = {din1}, + dim_out = {din1, din1, din1}, + lambda = {1}}}, + [ap("inputHDup")] = {{}, {dim_in = {din2}, + dim_out = {din2, din2, din2, din2, din2}, + lambda = {1}}}, + [ap("updateGDup")] = {{}, {dim_in = {din2}, + dim_out = {din2, din2}, + lambda = {1}}}, + [ap("updateMergeL")] = {{}, {dim_in = {din2, din2, din2}, + dim_out = {dout1}, + lambda = {1, -1, 1}}}, + }, + ["nerv.AffineLayer"] = { + [ap("mainAffineL")] = {{}, {dim_in = {din1, din2}, + dim_out = {dout1}, + pr = pr}}, + }, + ["nerv.TanhLayer"] = { + [ap("mainTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}}, + }, + ["nerv.GateFLayer"] = { + [ap("resetGateL")] = {{}, {dim_in = {din1, din2}, + dim_out = {din2}, + pr = pr}}, + [ap("updateGateL")] = {{}, {dim_in = {din1, din2}, + dim_out = {din2}, + pr = pr}}, + }, + ["nerv.ElemMulLayer"] = { + [ap("resetGMulL")] = {{}, {dim_in = {din2, din2}, dim_out = {din2}}}, + [ap("updateGMulCL")] = {{}, {dim_in = {din2, din2}, dim_out = {din2}}}, + [ap("updateGMulHL")] = {{}, {dim_in = {din2, din2}, dim_out = {din2}}}, + }, + } + + local layerRepo = nerv.LayerRepo(layers, pr, global_conf) + + local connections = { + ["<input>[1]"] = ap("inputXDup[1]"), + ["<input>[2]"] = ap("inputHDup[1]"), + + [ap("inputXDup[1]")] = ap("resetGateL[1]"), + [ap("inputHDup[1]")] = ap("resetGateL[2]"), + [ap("inputXDup[2]")] = ap("updateGateL[1]"), + [ap("inputHDup[2]")] = ap("updateGateL[2]"), + [ap("updateGateL[1]")] = ap("updateGDup[1]"), + + [ap("resetGateL[1]")] = ap("resetGMulL[1]"), + [ap("inputHDup[3]")] = ap("resetGMulL[2]"), + + [ap("inputXDup[3]")] = ap("mainAffineL[1]"), + [ap("resetGMulL[1]")] = ap("mainAffineL[2]"), + [ap("mainAffineL[1]")] = ap("mainTanhL[1]"), + + [ap("updateGDup[1]")] = ap("updateGMulHL[1]"), + [ap("inputHDup[4]")] = ap("updateGMulHL[2]"), + [ap("updateGDup[2]")] = ap("updateGMulCL[1]"), + [ap("mainTanhL[1]")] = ap("updateGMulCL[2]"), + + [ap("inputHDup[5]")] = ap("updateMergeL[1]"), + [ap("updateGMulHL[1]")] = ap("updateMergeL[2]"), + [ap("updateGMulCL[1]")] = ap("updateMergeL[3]"), + + [ap("updateMergeL[1]")] = "<output>[1]", + } + + self.dag = nerv.DAGLayer(self.id, global_conf, + {dim_in = self.dim_in, + dim_out = self.dim_out, + sub_layers = layerRepo, + connections = connections}) + + self:check_dim_len(2, 1) -- x, h and h +end + +function GRULayer:init(batch_size, chunk_size) + self.dag:init(batch_size, chunk_size) +end + +function GRULayer:batch_resize(batch_size, chunk_size) + self.dag:batch_resize(batch_size, chunk_size) +end + +function GRULayer:update(bp_err, input, output, t) + self.dag:update(bp_err, input, output, t) +end + +function GRULayer:propagate(input, output, t) + self.dag:propagate(input, output, t) +end + +function GRULayer:back_propagate(bp_err, next_bp_err, input, output, t) + self.dag:back_propagate(bp_err, next_bp_err, input, output, t) +end + +function GRULayer:get_params() + return self.dag:get_params() +end |