diff options
Diffstat (limited to 'nerv/examples/lmptb/rnn')
-rw-r--r-- | nerv/examples/lmptb/rnn/init.lua | 45 | ||||
-rw-r--r-- | nerv/examples/lmptb/rnn/softmax_ce_t.lua | 81 | ||||
-rw-r--r-- | nerv/examples/lmptb/rnn/tnn.lua | 2 |
3 files changed, 127 insertions, 1 deletions
diff --git a/nerv/examples/lmptb/rnn/init.lua b/nerv/examples/lmptb/rnn/init.lua new file mode 100644 index 0000000..0e08cb6 --- /dev/null +++ b/nerv/examples/lmptb/rnn/init.lua @@ -0,0 +1,45 @@ +local Layer = nerv.class('nerv.LayerT') + +function Layer:__init(id, global_conf, layer_conf) + nerv.error_method_not_implemented() +end + +function Layer:init(batch_size, chunk_size) + nerv.error_method_not_implemented() +end + +function Layer:update(bp_err, input, output, t) + nerv.error_method_not_implemented() +end + +function Layer:propagate(input, output, t) + nerv.error_method_not_implemented() +end + +function Layer:back_propagate(bp_err, next_bp_err, input, output, t) + nerv.error_method_not_implemented() +end + +function Layer:check_dim_len(len_in, len_out) + local expected_in = #self.dim_in + local expected_out = #self.dim_out + if len_in > 0 and expected_in ~= len_in then + nerv.error("layer %s expects %d inputs, %d given", + self.id, len_in, expected_in) + end + if len_out > 0 and expected_out ~= len_out then + nerv.error("layer %s expects %d outputs, %d given", + self.id, len_out, expected_out) + end +end + +function Layer:get_params() + nerv.error_method_not_implemented() +end + +function Layer:get_dim() + return self.dim_in, self.dim_out +end + +nerv.include('tnn.lua') +nerv.include('softmax_ce_t.lua') diff --git a/nerv/examples/lmptb/rnn/softmax_ce_t.lua b/nerv/examples/lmptb/rnn/softmax_ce_t.lua new file mode 100644 index 0000000..dddb05a --- /dev/null +++ b/nerv/examples/lmptb/rnn/softmax_ce_t.lua @@ -0,0 +1,81 @@ +local SoftmaxCELayer = nerv.class("nerv.SoftmaxCELayerT", "nerv.LayerT") + +function SoftmaxCELayer:__init(id, global_conf, layer_conf) + self.id = id + self.gconf = global_conf + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.compressed = layer_conf.compressed + if self.compressed == nil then + self.compressed = false + end + self:check_dim_len(2, -1) -- two inputs: nn output and label +end + +function SoftmaxCELayer:init(batch_size, chunk_size) + if not self.compressed and (self.dim_in[1] ~= self.dim_in[2]) then + nerv.error("mismatching dimensions of previous network output and labels") + end + self.total_ce = 0.0 + self.total_correct = 0 + self.total_frames = 0 + self.softmax_t = {} + self.ce_t = {} + for t = 1, chunk_size do + self.softmax_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) + self.ce_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) + end +end + +function SoftmaxCELayer:batch_resize(batch_size) + for t = 1, chunk_size do + if self.softmax_t[t]:nrow() ~= batch_resize then + self.softmax_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) + self.ce_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) + end + end +end + +function SoftmaxCELayer:update(bp_err, input, output, t) + -- no params, therefore do nothing +end + +function SoftmaxCELayer:propagate(input, output, t) + local softmax = self.softmax_t[t] + local ce = self.ce_t[t] + local classified = softmax:softmax(input[1]) + local label = input[2] + ce:log_elem(softmax) + if self.compressed then + label = label:decompress(input[1]:ncol()) + end + ce:mul_elem(ce, label) + ce = ce:rowsum() + if output[1] ~= nil then + output[1]:copy_fromd(ce) + end + -- add total ce + self.total_ce = self.total_ce - ce:colsum()[0][0] + self.total_frames = self.total_frames + softmax:nrow() + -- TODO: add colsame for uncompressed label + if self.compressed then + self.total_correct = self.total_correct + classified:colsame(input[2])[0][0] + end +end + +function SoftmaxCELayer:back_propagate(bp_err, next_bp_err, input, output, t) + -- softmax output - label + local label = input[2] + if self.compressed then + label = label:decompress(input[1]:ncol()) + end + local nbe = next_bp_err[1] + nbe:add(self.softmax_t[t], label, 1.0, -1.0) + if bp_err[1] ~= nil then + nbe:scale_rows_by_col(bp_err[1]) + end +end + +function SoftmaxCELayer:get_params() + return nerv.ParamRepo({}) +end diff --git a/nerv/examples/lmptb/rnn/tnn.lua b/nerv/examples/lmptb/rnn/tnn.lua index ae9ed7a..8c3963c 100644 --- a/nerv/examples/lmptb/rnn/tnn.lua +++ b/nerv/examples/lmptb/rnn/tnn.lua @@ -198,7 +198,7 @@ function TNN:init(batch_size, chunk_size) end end -- initialize sub layers - ref.layer:init(batch_size) + ref.layer:init(batch_size, chunk_size) end local flags_now = {} |