diff options
Diffstat (limited to 'nerv/examples/lmptb/rnn/tnn.lua')
-rw-r--r-- | nerv/examples/lmptb/rnn/tnn.lua | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/nerv/examples/lmptb/rnn/tnn.lua b/nerv/examples/lmptb/rnn/tnn.lua new file mode 100644 index 0000000..3f192b5 --- /dev/null +++ b/nerv/examples/lmptb/rnn/tnn.lua @@ -0,0 +1,299 @@ +local TNN = nerv.class("nerv.TNN", "nerv.Layer") +local DAGLayer = TNN + +local function parse_id(str) + --used to parse layerid[portid],time + local id, port, time, _ + _, _, id, port, time = string.find(str, "([a-zA-Z0-9_]+)%[([0-9]+)%][,]*([0-9]*)") + if id == nil or port == nil then + _, _, id, port, time = string.find(str, "(.+)%[([0-9]+)%][,]*([0-9]*)") + if not (id == "<input>" or id == "<output>") then + nerv.error("wrong format of connection id") + end + end + --print(str, id, port, time) + port = tonumber(port) + if (time == nil) then + time = 0 + else + time = tonumber(time) + end + --now time don't need to be parsed + return id, port +end + +local function discover(id, layers, layer_repo) + local ref = layers[id] + if id == "<input>" or id == "<output>" then + return nil + end + if ref == nil then + local layer = layer_repo:get_layer(id) + local dim_in, dim_out = layer:get_dim() + ref = { + layer = layer, + inputs_m = {}, --storage for computation, inputs_m[port][time] + outputs_m = {}, + err_inputs_m = {}, + err_outputs_m = {}, + conns_i = {}, --list of inputing connections + conns_o = {}, --list of outputing connections + dim_in = dim_in, --list of dimensions of ports + dim_out = dim_out, + } + layers[id] = ref + end + return ref +end + +nerv.TNN.FC = {} --flag const +nerv.TNN.FC.SEQ_START = 4 +nerv.TNN.FC.SEQ_END = 8 +nerv.TNN.FC.HAS_INPUT = 1 +nerv.TNN.FC.HAS_LABEL = 2 +nerv.TNN.FC.SEQ_NORM = bit.bor(nerv.TNN.FC.HAS_INPUT, nerv.TNN.FC.HAS_LABEL) --This instance have both input and label + +function DAGLayer.makeInitialStore(st, p, dim, batch_size, chunk_size, global_conf, st_c, p_c) + --Return a table of matrix storage from time (1-chunk_size)..(2*chunk_size) + if (type(st) ~= "table") then + nerv.error("st should be a table") + end + for i = 1 - chunk_size, chunk_size * 2 do + if (st[i] == nil) then + st[i] = {} + end + st[i][p] = global_conf.cumat_type(batch_size, dim) + st[i][p]:fill(0) + if (st_c ~= nil) then + if (st_c[i] == nil) then + st_c[i] = {} + end + st_c[i][p_c] = st[i][p] + end + end +end + +function DAGLayer:__init(id, global_conf, layer_conf) + local layers = {} + local inputs_p = {} --map:port of the TDAGLayer to layer ref and port + local outputs_p = {} + local dim_in = layer_conf.dim_in + local dim_out = layer_conf.dim_out + local parsed_conns = {} + local _ + + for _, ll in pairs(layer_conf.connections) do + local id_from, port_from = parse_id(ll[1]) + local id_to, port_to = parse_id(ll[2]) + local time_to = ll[3] + + print(id_from, id_to, time_to) + + local ref_from = discover(id_from, layers, layer_conf.sub_layers) + local ref_to = discover(id_to, layers, layer_conf.sub_layers) + + if (id_from == "<input>") then + if (dim_in[port_from] ~= ref_to.dim_in[port_to] or time_to ~= 0) then + nerv.error("mismatch dimension or wrong time %s,%s,%d", ll[1], ll[2], ll[3]) + end + inputs_p[port_from] = {["ref"] = ref_to, ["port"] = port_to} + ref_to.inputs_m[port_to] = {} --just a place holder + elseif (id_to == "<output>") then + if (dim_out[port_to] ~= ref_from.dim_out[port_from] or time_to ~= 0) then + nerv.error("mismatch dimension or wrong time %s,%s,%d", ll[1], ll[2], ll[3]) + end + outputs_p[port_to] = {["ref"] = ref_from, ["port"] = port_from} + ref_from.outputs_m[port_from] = {} --just a place holder + else + conn_now = { + ["src"] = {["ref"] = ref_from, ["port"] = port_from}, + ["dst"] = {["ref"] = ref_to, ["port"] = port_to}, + ["time"] = time_to + } + if (ref_to.dim_in[port_to] ~= ref_from.dim_out[port_from]) then + nerv.error("mismatch dimension or wrong time %s,%s,%d", ll[1], ll[2], ll[3]) + end + table.insert(parsed_conns, conn_now) + table.insert(ref_to.conns_i, conn_now) + table.insert(ref_from.conns_o, conn_now) + end + end + + self.layers = layers + self.inputs_p = inputs_p + self.outputs_p = outputs_p + self.id = id + self.dim_in = dim_in + self.dim_out = dim_out + self.parsed_conns = parsed_conns + self.gconf = global_conf +end + +function DAGLayer:init(batch_size, chunk_size) + for i, conn in ipairs(self.parsed_conns) do --init storage for connections inside the NN + local _, output_dim + local ref_from, port_from, ref_to, port_to + ref_from, port_from = conn.src.ref, conn.src.port + ref_to, port_to = conn.dst.ref, conn.dst.port + local dim = ref_from.dim_out[port_from] + if (dim == 0) then + nerv.error("layer %s has a zero dim port", ref_from.layer.id) + end + + print("TNN initing storage", ref_from.layer.id, "->", ref_to.layer.id) + self.makeInitialStore(ref_from.outputs_m, port_from, dim, batch_size, chunk_size, global_conf, ref_to.inputs_m, port_to) + self.makeInitialStore(ref_from.err_inputs_m, port_from, dim, batch_size, chunk_size, global_conf, ref_to.err_outputs_m, port_to) + + end + + self.outputs_m = {} + self.err_inputs_m = {} + for i = 1, #self.dim_out do --Init storage for output ports + local ref = self.outputs_p[i].ref + local p = self.outputs_p[i].port + self.makeInitialStore(ref.outputs_m, p, self.dim_out[i], batch_size, chunk_size, self.gconf, self.outputs_m, i) + self.makeInitialStore(ref.err_inputs_m, p, self.dim_out[i], batch_size, chunk_size, self.gconf, self.err_inputs_m, i) + end + + self.inputs_m = {} + self.err_outputs_m = {} + for i = 1, #self.dim_in do --Init storage for input ports + local ref = self.inputs_p[i].ref + local p = self.inputs_p[i].port + self.makeInitialStore(ref.inputs_m, p, self.dim_in[i], batch_size, chunk_size, self.gconf, self.inputs_m, i) + self.makeInitialStore(ref.err_outputs_m, p, self.dim_in[i], batch_size, chunk_size, self.gconf, self.err_outputs_m, i) + end + + for id, ref in pairs(self.layers) do --Calling init for child layers + for i = 1, #ref.dim_in do + if (ref.inputs_m[i] == nil or ref.err_outputs_m[i] == nil) then + nerv.error("dangling input port %d of layer %s", i, id) + end + end + for i = 1, #ref.dim_out do + if (ref.outputs_m[i] == nil or ref.err_inputs_m[i] == nil) then + nerv.error("dangling output port %d of layer %s", i, id) + end + end + -- initialize sub layers + ref.layer:init(batch_size) + end + + local flags_now = {} + for i = 1, chunk_size do + flags_now[i] = {} + end + + self.feeds_now = {} --feeds is for the reader to fill + self.feeds_now.inputs_m = self.inputs_m + self.feeds_now.flags_now = flags_now +end + +--[[ +function DAGLayer:batch_resize(batch_size) + self.gconf.batch_size = batch_size + + for i, conn in ipairs(self.parsed_conn) do + local _, output_dim + local ref_from, port_from, ref_to, port_to + ref_from, port_from = unpack(conn[1]) + ref_to, port_to = unpack(conn[2]) + _, output_dim = ref_from.layer:get_dim() + + if ref_from.outputs[port_from]:nrow() ~= batch_size and output_dim[port_from] > 0 then + local mid = self.gconf.cumat_type(batch_size, output_dim[port_from]) + local err_mid = mid:create() + + ref_from.outputs[port_from] = mid + ref_to.inputs[port_to] = mid + + ref_from.err_inputs[port_from] = err_mid + ref_to.err_outputs[port_to] = err_mid + end + end + for id, ref in pairs(self.layers) do + ref.layer:batch_resize(batch_size) + end + collectgarbage("collect") +end +]]-- + +--reader: some reader +--Returns: bool, whether has new feed +--Returns: feeds, a table that will be filled with the reader's feeds +function DAGLayer:getFeedFromReader(reader) + local feeds = self.feeds_now + local got_new = reader:get_batch(feeds) + return got_new, feeds +end + +function DAGLayer:update(bp_err, input, output) + self:set_err_inputs(bp_err) + self:set_inputs(input) + self:set_outputs(output) + -- print("update") + for id, ref in pairs(self.queue) do + -- print(ref.layer.id) + ref.layer:update(ref.err_inputs, ref.inputs, ref.outputs) + end +end + +function DAGLayer:propagate(input, output) + self:set_inputs(input) + self:set_outputs(output) + local ret = false + for i = 1, #self.queue do + local ref = self.queue[i] + -- print(ref.layer.id) + ret = ref.layer:propagate(ref.inputs, ref.outputs) + end + return ret +end + +function DAGLayer:back_propagate(bp_err, next_bp_err, input, output) + self:set_err_outputs(next_bp_err) + self:set_err_inputs(bp_err) + self:set_inputs(input) + self:set_outputs(output) + for i = #self.queue, 1, -1 do + local ref = self.queue[i] + -- print(ref.layer.id) + ref.layer:back_propagate(ref.err_inputs, ref.err_outputs, ref.inputs, ref.outputs) + end +end + +--Return: nerv.ParamRepo +function DAGLayer:get_params() + local param_repos = {} + for id, ref in pairs(self.queue) do + table.insert(param_repos, ref.layer:get_params()) + end + return nerv.ParamRepo.merge(param_repos) +end + +DAGLayer.PORT_TYPES = { + INPUT = {}, + OUTPUT = {}, + ERR_INPUT = {}, + ERR_OUTPUT = {} +} + +function DAGLayer:get_intermediate(id, port_type) + if id == "<input>" or id == "<output>" then + nerv.error("an actual real layer id is expected") + end + local layer = self.layers[id] + if layer == nil then + nerv.error("layer id %s not found", id) + end + if port_type == DAGLayer.PORT_TYPES.INPUT then + return layer.inputs + elseif port_type == DAGLayer.PORT_TYPES.OUTPUT then + return layer.outputs + elseif port_type == DAGLayer.PORT_TYPES.ERR_INPUT then + return layer.err_inputs + elseif port_type == DAGLayer.PORT_TYPES.ERR_OUTPUT then + return layer.err_outputs + end + nerv.error("unrecognized port type") +end |