summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
Diffstat (limited to 'examples')
-rw-r--r--examples/test_dnn_layers.lua2
-rw-r--r--examples/test_nn_lib.lua91
2 files changed, 71 insertions, 22 deletions
diff --git a/examples/test_dnn_layers.lua b/examples/test_dnn_layers.lua
index 6e4d98d..f306807 100644
--- a/examples/test_dnn_layers.lua
+++ b/examples/test_dnn_layers.lua
@@ -3,7 +3,7 @@ require 'layer.sigmoid'
require 'layer.softmax_ce'
global_conf = {lrate = 0.8, wcost = 1e-6,
- momentum = 0.9, mat_type = nerv.CuMatrixFloat}
+ momentum = 0.9, cumat_type = nerv.CuMatrixFloat}
pf = nerv.ChunkFile("affine.param", "r")
ltp = pf:read_chunk("a", global_conf)
diff --git a/examples/test_nn_lib.lua b/examples/test_nn_lib.lua
index ec338fe..9600917 100644
--- a/examples/test_nn_lib.lua
+++ b/examples/test_nn_lib.lua
@@ -1,14 +1,24 @@
--- require 'layer.affine'
--- require 'layer.sigmoid'
--- require 'layer.softmax_ce'
-
+require 'speech.init'
gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9,
- mat_type = nerv.CuMatrixFloat,
- batch_size = 10}
+ cumat_type = nerv.CuMatrixFloat,
+ mmat_type = nerv.MMatrixFloat,
+ batch_size = 256}
-param_repo = nerv.ParamRepo({"converted.nerv"})
+param_repo = nerv.ParamRepo({"converted.nerv", "global_transf.nerv"})
sublayer_repo = nerv.LayerRepo(
{
+ -- global transf
+ ["nerv.BiasLayer"] =
+ {
+ blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}},
+ blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}}
+ },
+ ["nerv.WindowLayer"] =
+ {
+ wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}},
+ wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}}
+ },
+ -- biased linearity
["nerv.AffineLayer"] =
{
affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"},
@@ -40,7 +50,7 @@ sublayer_repo = nerv.LayerRepo(
},
["nerv.SoftmaxCELayer"] =
{
- softmax_ce0 = {{}, {dim_in = {3001, 3001}, dim_out = {}}}
+ softmax_ce0 = {{}, {dim_in = {3001, 1}, dim_out = {}, compressed = true}}
}
}, param_repo, gconf)
@@ -48,8 +58,19 @@ layer_repo = nerv.LayerRepo(
{
["nerv.DAGLayer"] =
{
+ global_transf = {{}, {
+ dim_in = {429}, dim_out = {429},
+ sub_layers = sublayer_repo,
+ connections = {
+ ["<input>[1]"] = "blayer1[1]",
+ ["blayer1[1]"] = "wlayer1[1]",
+ ["wlayer1[1]"] = "blayer2[1]",
+ ["blayer2[1]"] = "wlayer2[1]",
+ ["wlayer2[1]"] = "<output>[1]"
+ }
+ }},
main = {{}, {
- dim_in = {429, 3001}, dim_out = {},
+ dim_in = {429, 1}, dim_out = {},
sub_layers = sublayer_repo,
connections = {
["<input>[1]"] = "affine0[1]",
@@ -74,24 +95,52 @@ layer_repo = nerv.LayerRepo(
}
}, param_repo, gconf)
-df = nerv.ChunkFile("input.param", "r")
-label = nerv.CuMatrixFloat(10, 3001)
-label:fill(0)
-for i = 0, 9 do
- label[i][i] = 1.0
-end
+tnet_reader = nerv.TNetReader(gconf,
+ {
+ id = "main_scp",
+ scp_file = "/slfs1/users/mfy43/swb_ivec/train_bp.scp",
+-- scp_file = "t.scp",
+ conf_file = "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf",
+ frm_ext = 5,
+ mlfs = {
+ ref = {
+ file = "/slfs1/users/mfy43/swb_ivec/ref.mlf",
+ format = "map",
+ format_arg = "/slfs1/users/mfy43/swb_ivec/dict",
+ dir = "*/",
+ ext = "lab"
+ }
+ },
+ global_transf = layer_repo:get_layer("global_transf")
+ })
+
+buffer = nerv.SGDBuffer(gconf,
+ {
+ buffer_size = 8192,
+ readers = {
+ { reader = tnet_reader,
+ data = {main_scp = 429, ref = 1}}
+ }
+ })
-input = {df:read_chunk("input", gconf).trans, label}
-output = {}
-err_input = {}
-err_output = {input[1]:create()}
sm = sublayer_repo:get_layer("softmax_ce0")
main = layer_repo:get_layer("main")
-main:init()
-for i = 0, 3 do
+main:init(gconf.batch_size)
+cnt = 0
+for data in buffer.get_data, buffer do
+ if cnt == 1000 then break end
+ cnt = cnt + 1
+ input = {data.main_scp, data.ref}
+ output = {}
+ err_input = {}
+ err_output = {input[1]:create()}
+
main:propagate(input, output)
main:back_propagate(err_output, err_input, input, output)
main:update(err_input, input, output)
+
nerv.utils.printf("cross entropy: %.8f\n", sm.total_ce)
nerv.utils.printf("frames: %.8f\n", sm.total_frames)
+ nerv.utils.printf("err/frm: %.8f\n", sm.total_ce / sm.total_frames)
+ collectgarbage("collect")
end