aboutsummaryrefslogtreecommitdiff
path: root/examples/test_nn_lib.lua
diff options
context:
space:
mode:
Diffstat (limited to 'examples/test_nn_lib.lua')
-rw-r--r--examples/test_nn_lib.lua97
1 files changed, 97 insertions, 0 deletions
diff --git a/examples/test_nn_lib.lua b/examples/test_nn_lib.lua
new file mode 100644
index 0000000..ec338fe
--- /dev/null
+++ b/examples/test_nn_lib.lua
@@ -0,0 +1,97 @@
+-- require 'layer.affine'
+-- require 'layer.sigmoid'
+-- require 'layer.softmax_ce'
+
+gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9,
+ mat_type = nerv.CuMatrixFloat,
+ batch_size = 10}
+
+param_repo = nerv.ParamRepo({"converted.nerv"})
+sublayer_repo = nerv.LayerRepo(
+ {
+ ["nerv.AffineLayer"] =
+ {
+ affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"},
+ {dim_in = {429}, dim_out = {2048}}},
+ affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"},
+ {dim_in = {2048}, dim_out = {3001}}}
+ },
+ ["nerv.SigmoidLayer"] =
+ {
+ sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}}
+ },
+ ["nerv.SoftmaxCELayer"] =
+ {
+ softmax_ce0 = {{}, {dim_in = {3001, 3001}, dim_out = {}}}
+ }
+ }, param_repo, gconf)
+
+layer_repo = nerv.LayerRepo(
+ {
+ ["nerv.DAGLayer"] =
+ {
+ main = {{}, {
+ dim_in = {429, 3001}, dim_out = {},
+ sub_layers = sublayer_repo,
+ connections = {
+ ["<input>[1]"] = "affine0[1]",
+ ["affine0[1]"] = "sigmoid0[1]",
+ ["sigmoid0[1]"] = "affine1[1]",
+ ["affine1[1]"] = "sigmoid1[1]",
+ ["sigmoid1[1]"] = "affine2[1]",
+ ["affine2[1]"] = "sigmoid2[1]",
+ ["sigmoid2[1]"] = "affine3[1]",
+ ["affine3[1]"] = "sigmoid3[1]",
+ ["sigmoid3[1]"] = "affine4[1]",
+ ["affine4[1]"] = "sigmoid4[1]",
+ ["sigmoid4[1]"] = "affine5[1]",
+ ["affine5[1]"] = "sigmoid5[1]",
+ ["sigmoid5[1]"] = "affine6[1]",
+ ["affine6[1]"] = "sigmoid6[1]",
+ ["sigmoid6[1]"] = "affine7[1]",
+ ["affine7[1]"] = "softmax_ce0[1]",
+ ["<input>[2]"] = "softmax_ce0[2]"
+ }
+ }}
+ }
+ }, param_repo, gconf)
+
+df = nerv.ChunkFile("input.param", "r")
+label = nerv.CuMatrixFloat(10, 3001)
+label:fill(0)
+for i = 0, 9 do
+ label[i][i] = 1.0
+end
+
+input = {df:read_chunk("input", gconf).trans, label}
+output = {}
+err_input = {}
+err_output = {input[1]:create()}
+sm = sublayer_repo:get_layer("softmax_ce0")
+main = layer_repo:get_layer("main")
+main:init()
+for i = 0, 3 do
+ main:propagate(input, output)
+ main:back_propagate(err_output, err_input, input, output)
+ main:update(err_input, input, output)
+ nerv.utils.printf("cross entropy: %.8f\n", sm.total_ce)
+ nerv.utils.printf("frames: %.8f\n", sm.total_frames)
+end