diff options
Diffstat (limited to 'examples/asr_trainer.lua')
-rw-r--r-- | examples/asr_trainer.lua | 106 |
1 files changed, 0 insertions, 106 deletions
diff --git a/examples/asr_trainer.lua b/examples/asr_trainer.lua deleted file mode 100644 index a5727be..0000000 --- a/examples/asr_trainer.lua +++ /dev/null @@ -1,106 +0,0 @@ -function build_trainer(ifname) - local param_repo = nerv.ParamRepo() - param_repo:import(ifname, nil, gconf) - local sublayer_repo = make_sublayer_repo(param_repo) - local layer_repo = make_layer_repo(sublayer_repo, param_repo) - local crit = get_criterion_layer(sublayer_repo) - local network = get_network(layer_repo) - local input_order = get_input_order() - local iterative_trainer = function (prefix, scp_file, bp) - gconf.randomize = bp - -- build buffer - local buffer = make_buffer(make_readers(scp_file, layer_repo)) - -- initialize the network - network:init(gconf.batch_size) - gconf.cnt = 0 - err_input = {nerv.CuMatrixFloat(256, 1)} - err_input[1]:fill(1) - for data in buffer.get_data, buffer do - -- prine stat periodically - gconf.cnt = gconf.cnt + 1 - if gconf.cnt == 1000 then - print_stat(sublayer_repo) - nerv.CuMatrix.print_profile() - nerv.CuMatrix.clear_profile() - gconf.cnt = 0 - -- break - end - local input = {} --- if gconf.cnt == 100 then break end - for i, id in ipairs(input_order) do - if data[id] == nil then - nerv.error("input data %s not found", id) - end - table.insert(input, data[id]) - end - local output = {nerv.CuMatrixFloat(256, 1)} - err_output = {input[1]:create()} - network:propagate(input, output) - if bp then - network:back_propagate(err_input, err_output, input, output) - network:update(err_input, input, output) - end - -- collect garbage in-time to save GPU memory - collectgarbage("collect") - end - print_stat(sublayer_repo) - nerv.CuMatrix.print_profile() - nerv.CuMatrix.clear_profile() - if (not bp) and prefix ~= nil then - nerv.info("writing back...") - local fname = string.format("%s_cv%.3f.nerv", - prefix, get_accuracy(sublayer_repo)) - network:get_params():export(fname, nil) - end - return get_accuracy(sublayer_repo) - end - return iterative_trainer -end - -dofile(arg[1]) -start_halving_inc = 0.5 -halving_factor = 0.6 -end_halving_inc = 0.1 -min_iter = 1 -max_iter = 20 -min_halving = 5 -gconf.batch_size = 256 -gconf.buffer_size = 81920 - -local pf0 = gconf.initialized_param -local trainer = build_trainer(pf0) ---local trainer = build_trainer("c3.nerv") -local accu_best = trainer(nil, gconf.cv_scp, false) -local do_halving = false - -nerv.info("initial cross validation: %.3f", accu_best) -for i = 1, max_iter do - nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate) - local accu_tr = trainer(nil, gconf.tr_scp, true) - nerv.info("[TR] training set %d: %.3f", i, accu_tr) - local accu_new = trainer( - string.format("%s_%s_iter_%d_lr%f_tr%.3f", - string.gsub( - (string.gsub(pf0[1], "(.*/)(.*)", "%2")), - "(.*)%..*", "%1"), - os.date("%Y%m%d%H%M%S"), - i, gconf.lrate, - accu_tr), - gconf.cv_scp, false) - nerv.info("[CV] cross validation %d: %.3f", i, accu_new) - -- TODO: revert the weights - local accu_diff = accu_new - accu_best - if do_halving and accu_diff < end_halving_inc and i > min_iter then - break - end - if accu_diff < start_halving_inc and i >= min_halving then - do_halving = true - end - if do_halving then - gconf.lrate = gconf.lrate * halving_factor - end - if accu_new > accu_best then - accu_best = accu_new - end --- nerv.Matrix.print_profile() -end |