diff options
Diffstat (limited to 'embedding_example')
-rw-r--r-- | embedding_example/.gitignore | 2 | ||||
-rw-r--r-- | embedding_example/Makefile | 9 | ||||
-rw-r--r-- | embedding_example/main.c | 95 | ||||
-rw-r--r-- | embedding_example/setup_nerv.lua | 26 | ||||
-rw-r--r-- | embedding_example/swb_baseline_decode.lua | 109 |
5 files changed, 241 insertions, 0 deletions
diff --git a/embedding_example/.gitignore b/embedding_example/.gitignore new file mode 100644 index 0000000..8e68213 --- /dev/null +++ b/embedding_example/.gitignore @@ -0,0 +1,2 @@ +main +main.o diff --git a/embedding_example/Makefile b/embedding_example/Makefile new file mode 100644 index 0000000..e4ee314 --- /dev/null +++ b/embedding_example/Makefile @@ -0,0 +1,9 @@ +CFLAG += -I ../install/include/luajit-2.0/ -I ../install/include/nerv/ +LDFLAG += -L../install/lib/ -lluajit-5.1 -Wl,-rpath=../install/lib/ -lluaT -lnervcore +GCC := gcc + +main: main.o + $(GCC) -o $@ $< $(LDFLAG) + +main.o: main.c + $(GCC) $(CFLAG) -o $@ $< -c diff --git a/embedding_example/main.c b/embedding_example/main.c new file mode 100644 index 0000000..4e70892 --- /dev/null +++ b/embedding_example/main.c @@ -0,0 +1,95 @@ +#include "lua.h" +#include "lauxlib.h" +#include "lualib.h" +#include "matrix/matrix.h" +#include "common.h" +#include "luaT/luaT.h" +#include <stdio.h> + +const char *nerv_matrix_host_float_tname = "nerv.MMatrixFloat"; +extern Matrix *nerv_matrix_host_float_create(long nrow, long ncol, Status *status); +extern void nerv_matrix_host_float_data_retain(Matrix *self); +extern void nerv_matrix_host_float_data_free(Matrix *self, Status *status); + +lua_State *L; +Matrix *input, *output; +Status status; + +void setup_nerv() { + L = lua_open(); + luaL_openlibs(L); + luaL_loadfile(L, "setup_nerv.lua"); + /* network configuration */ + lua_pushstring(L, "swb_baseline_decode.lua"); + if (lua_pcall(L, 1, LUA_MULTRET, 0)) + { + printf("%s\n", luaL_checkstring(L, 1)); + exit(1); + } + /* lua stack now: input width, output width, propagator */ + input = nerv_matrix_host_float_create(1, luaL_checkinteger(L, 1), &status); + NERV_LUA_CHECK_STATUS(L, status); + output = nerv_matrix_host_float_create(1, luaL_checkinteger(L, 2), &status); + NERV_LUA_CHECK_STATUS(L, status); +} + + +void propagate(float for_fun) { + int i, j; + printf("ok: %d\n", lua_gettop(L)); + lua_pushvalue(L, 3); + /* lua stack now: input width, output width, propagator, propagator */ + for (i = 0; i < input->nrow; i++) /* nrow is actually 1 */ + { + float *nerv_row = (float *)((char *)input->data.f + i * input->stride); + for (j = 0; j < input->ncol; j++) + { + nerv_row[j] = j * for_fun; + } + } + /* avoid gc */ + nerv_matrix_host_float_data_retain(input); + nerv_matrix_host_float_data_retain(input); + nerv_matrix_host_float_data_retain(input); + nerv_matrix_host_float_data_retain(input); + nerv_matrix_host_float_data_retain(output); + nerv_matrix_host_float_data_retain(output); + nerv_matrix_host_float_data_retain(output); + nerv_matrix_host_float_data_retain(output); + + luaT_pushudata(L, input, nerv_matrix_host_float_tname); + luaT_pushudata(L, output, nerv_matrix_host_float_tname); + /* lua stack now: input width, output width, propagator, propagator, input, output */ + if (lua_pcall(L, 2, 0, 0)) /* call propagator with two parameters */ + { + printf("%s\n", luaL_checkstring(L, -1)); + exit(-1); + } + /* lua stack now: input width, output width, propagator */ + printf("## caller ##\n"); + for (i = 0; i < output->nrow; i++) /* nrow is actually 1 */ + { + float *nerv_row = (float *)((char *)output->data.f + i * output->stride); + for (j = 0; j < output->ncol; j++) + { + printf("%.8f ", nerv_row[j]); + } + printf("\n"); + } +} + +void teardown_nerv() { + nerv_matrix_host_float_data_free(input, &status); + NERV_LUA_CHECK_STATUS(L, status); + nerv_matrix_host_float_data_free(output, &status); + NERV_LUA_CHECK_STATUS(L, status); +} + +int main() { + setup_nerv(); + propagate(1.0); + propagate(2.0); + propagate(3.0); + teardown_nerv(); + return 0; +} diff --git a/embedding_example/setup_nerv.lua b/embedding_example/setup_nerv.lua new file mode 100644 index 0000000..e33a1e7 --- /dev/null +++ b/embedding_example/setup_nerv.lua @@ -0,0 +1,26 @@ +package.path="/home/slhome/mfy43/.luarocks/share/lua/5.1/?.lua;/home/slhome/mfy43/.luarocks/share/lua/5.1/?/init.lua;/home/slhome/mfy43/nerv/install/share/lua/5.1/?.lua;/home/slhome/mfy43/nerv/install/share/lua/5.1/?/init.lua;"..package.path +package.cpath="/home/slhome/mfy43/.luarocks/lib/lua/5.1/?.so;/home/slhome/mfy43/nerv/install/lib/lua/5.1/?.so;"..package.cpath +local k,l,_=pcall(require,"luarocks.loader") _=k and l.add_context("nerv","scm-1") + +local args = {...} +require 'nerv' +dofile(args[1]) +local param_repo = nerv.ParamRepo() +param_repo:import(gconf.initialized_param, nil, gconf) +local sublayer_repo = make_sublayer_repo(param_repo) +local layer_repo = make_layer_repo(sublayer_repo, param_repo) +local network = get_network(layer_repo) +local batch_size = 1 +network:init(batch_size) +function propagator(input, output) + local gpu_input = nerv.CuMatrixFloat(input:nrow(), input:ncol()) + local gpu_output = nerv.CuMatrixFloat(output:nrow(), output:ncol()) + gpu_input:copy_fromh(input) + print(gpu_input) + network:propagate({gpu_input}, {gpu_output}) + gpu_output:copy_toh(output) + print(output) + -- collect garbage in-time to save GPU memory + collectgarbage("collect") +end +return network.dim_in[1], network.dim_out[1], propagator diff --git a/embedding_example/swb_baseline_decode.lua b/embedding_example/swb_baseline_decode.lua new file mode 100644 index 0000000..14a463b --- /dev/null +++ b/embedding_example/swb_baseline_decode.lua @@ -0,0 +1,109 @@ +require 'htk_io' +gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + frm_ext = 5, + tr_scp = "/slfs1/users/mfy43/swb_ivec/train_bp.scp", + cv_scp = "/slfs1/users/mfy43/swb_ivec/train_cv.scp", + htk_conf = "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf", + initialized_param = {"/slfs1/users/mfy43/swb_init.nerv", + "/slfs1/users/mfy43/swb_global_transf.nerv"}, + debug = false} + +function make_sublayer_repo(param_repo) + return nerv.LayerRepo( + { + -- global transf + ["nerv.BiasLayer"] = + { + blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}}, + blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}} + }, + ["nerv.WindowLayer"] = + { + wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}}, + wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}} + }, + -- biased linearity + ["nerv.AffineLayer"] = + { + affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, + {dim_in = {429}, dim_out = {2048}}}, + affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"}, + {dim_in = {2048}, dim_out = {3001}}} + }, + ["nerv.SigmoidLayer"] = + { + sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}} + }, + ["nerv.SoftmaxLayer"] = + { + soutput = {{}, {dim_in = {3001}, dim_out = {3001}}} + } + }, param_repo, gconf) +end + +function make_layer_repo(sublayer_repo, param_repo) + return nerv.LayerRepo( + { + ["nerv.DAGLayer"] = + { + global_transf = {{}, { + dim_in = {429}, dim_out = {429}, + sub_layers = sublayer_repo, + connections = { + ["<input>[1]"] = "blayer1[1]", + ["blayer1[1]"] = "wlayer1[1]", + ["wlayer1[1]"] = "blayer2[1]", + ["blayer2[1]"] = "wlayer2[1]", + ["wlayer2[1]"] = "<output>[1]" + } + }}, + main = {{}, { + dim_in = {429}, dim_out = {3001}, + sub_layers = sublayer_repo, + connections = { + ["<input>[1]"] = "affine0[1]", + ["affine0[1]"] = "sigmoid0[1]", + ["sigmoid0[1]"] = "affine1[1]", + ["affine1[1]"] = "sigmoid1[1]", + ["sigmoid1[1]"] = "affine2[1]", + ["affine2[1]"] = "sigmoid2[1]", + ["sigmoid2[1]"] = "affine3[1]", + ["affine3[1]"] = "sigmoid3[1]", + ["sigmoid3[1]"] = "affine4[1]", + ["affine4[1]"] = "sigmoid4[1]", + ["sigmoid4[1]"] = "affine5[1]", + ["affine5[1]"] = "sigmoid5[1]", + ["sigmoid5[1]"] = "affine6[1]", + ["affine6[1]"] = "sigmoid6[1]", + ["sigmoid6[1]"] = "affine7[1]", + ["affine7[1]"] = "soutput[1]", + ["soutput[1]"] = "<output>[1]" + } + }} + } + }, param_repo, gconf) +end + +function get_network(layer_repo) + return layer_repo:get_layer("main") +end |