diff options
Diffstat (limited to 'doc')
-rw-r--r-- | doc/nerv.md | 2 | ||||
-rw-r--r-- | doc/nerv_layer.md | 10 | ||||
-rw-r--r-- | doc/nerv_nn.md | 37 |
3 files changed, 42 insertions, 7 deletions
diff --git a/doc/nerv.md b/doc/nerv.md index 22b4072..28411f5 100644 --- a/doc/nerv.md +++ b/doc/nerv.md @@ -13,3 +13,5 @@ A registered function, the original function is `luaT_lua_getmetatable`. `tname` A registered function, the original function is `luaT_newmetatable`, it returns the metatable of the created class by the name `tname`. * __string = nerv.setmetatable(table self, string tname)__ A registered function, the original function is `luaT_lua_setmetatable`. It assigns the metatable registered in __luaT__ by the name *tname* to the table *self*. And return *tname* to user. +* __table = nerv.get_type(string typename)__ +Returns the type(`loadstring("return " .. typename)`).
\ No newline at end of file diff --git a/doc/nerv_layer.md b/doc/nerv_layer.md index 0425d5f..ac6480c 100644 --- a/doc/nerv_layer.md +++ b/doc/nerv_layer.md @@ -141,7 +141,8 @@ print('network input&output&error space allocation...') affineI = {dataM} --input to the network is data affineO = {nerv.CuMatrixFloat(data_num, 2)} softmaxI = {affineO[1], labelM} -softmaxO = {nerv.CuMatrixFloat(data_num, 2)} +softmaxO = {} +output = nerv.CuMatrixFloat(data_num, 2) affineE = {nerv.CuMatrixFloat(data_num, 2)} --[[space allocation end]]-- @@ -152,9 +153,9 @@ ce_last = 0 for l = 0, 10, 1 do affineL:propagate(affineI, affineO) softmaxL:propagate(softmaxI, softmaxO) - softmaxO[1]:softmax(softmaxI[1]) + output:softmax(softmaxI[1]) - softmaxL:back_propagate(affineE, nil, softmaxI, softmaxO) + softmaxL:back_propagate(affineE, {}, softmaxI, softmaxO) affineL:update(affineE, affineI, affineO) @@ -162,10 +163,9 @@ for l = 0, 10, 1 do nerv.utils.printf("training iteration %d finished\n", l) nerv.utils.printf("cross entropy: %.8f\n", softmaxL.total_ce - ce_last) ce_last = softmaxL.total_ce - nerv.utils.printf("accurate labels: %d\n", calculate_accurate(softmaxO[1], labelM)) + nerv.utils.printf("accurate labels: %d\n", calculate_accurate(output, labelM)) nerv.utils.printf("total frames processed: %.8f\n", softmaxL.total_frames) end end --[[end training]]-- - ```
\ No newline at end of file diff --git a/doc/nerv_nn.md b/doc/nerv_nn.md index 54c7165..0f274c4 100644 --- a/doc/nerv_nn.md +++ b/doc/nerv_nn.md @@ -12,7 +12,24 @@ it contains __nerv.LayerRepo__, __nerv.ParamRepo__, and __nerv.DAGLayer__(inheri * `table layers` Contains the mapping of layer ID to layer object. objects. * __nerv.DAGLayer__ inherits __nerv.Layer__. - + * `table layers` Mapping from a layer ID to its "ref". A ref is of the structure below: + ``` + nerv.Layer layer --its layer + nerv.Matrix inputs + nerv.Matrix outputs + nerv.Matrix err_inputs + nerv.Matrix err_outputs + table next_layers + int input_len -- #dim_in + int output_len -- #dim_out + int in_deg + bool visited -- used in topology sort + ``` + * `inputs` + * `outputs` + * `parsed_conn` + * `queue` + ##Methods## ###__nerv.ParamRepo__### * __void ParamRepo:\_\_init(table param_files)__ @@ -29,4 +46,20 @@ llist : {layer1, layer2, ...} layer : layerid = {param_config, layer_config} param_config : {param1 = paramID1, param2 = paramID2} ``` -__LayerRepo__ will merge `param_config` into `layer_config` and construct a layer by calling `layer_type(layerid, global_conf, layer_config)`.
\ No newline at end of file +__LayerRepo__ will merge `param_config` into `layer_config` and construct a layer by calling `layer_type(layerid, global_conf, layer_config)`. + +* __[nerv.Layer] LayerRepo.get_layer([LayerRepo] self, [string] lid)__ +`self`, __nerv.LayerRepo__, ... +Returns the layer with ID `lid`. + +###__nerv.DAGLayer__### +* __DAGLayer:\_\_init(id, global_conf, layer_conf, [a, b, ...])__ + Returns: + __string__, dfdfdfddf + __asasa__, asasasasa + Parameters: + `id`: __string__, the ID of the layer. + `global_conf`:__table__,the global config. + + sasasa +
\ No newline at end of file |