diff options
-rw-r--r-- | doc/nerv.md | 2 | ||||
-rw-r--r-- | doc/nerv_layer.md | 23 | ||||
-rw-r--r-- | doc/nerv_nn.md | 256 | ||||
-rw-r--r-- | matrix/init.lua | 17 |
4 files changed, 275 insertions, 23 deletions
diff --git a/doc/nerv.md b/doc/nerv.md index 22b4072..28411f5 100644 --- a/doc/nerv.md +++ b/doc/nerv.md @@ -13,3 +13,5 @@ A registered function, the original function is `luaT_lua_getmetatable`. `tname` A registered function, the original function is `luaT_newmetatable`, it returns the metatable of the created class by the name `tname`. * __string = nerv.setmetatable(table self, string tname)__ A registered function, the original function is `luaT_lua_setmetatable`. It assigns the metatable registered in __luaT__ by the name *tname* to the table *self*. And return *tname* to user. +* __table = nerv.get_type(string typename)__ +Returns the type(`loadstring("return " .. typename)`).
\ No newline at end of file diff --git a/doc/nerv_layer.md b/doc/nerv_layer.md index 0425d5f..de2fb12 100644 --- a/doc/nerv_layer.md +++ b/doc/nerv_layer.md @@ -15,7 +15,7 @@ __nerv.Layer__ is the base class and most of its methods are abstract. * __nerv.BiasLayer__ inherits __nerv.Layer__, both `#dim_in` nad `#dim_out` are 1. * `BiasParam bias` The bias parameter. * __nerv.SigmoidLayer__ inherits __nerv.Layer__, both `#dim_in` and `#dim_out` are 1. -* __nerv.SoftmaxCELayer__ inherits __nerv.Layer__, `#dim_in` is 2 and `#dim_out` is 0. `input[1]` is the input to the softmax layer, `input[2]` is the reference distribution. +* __nerv.SoftmaxCELayer__ inherits __nerv.Layer__, `#dim_in` is 2 and `#dim_out` is -1(optional). `input[1]` is the input to the softmax layer, `input[2]` is the reference distribution. In its `propagate(input, output)` method, if `output[1] ~= nil`, cross\_entropy value will outputed. * `float total_ce` Records the accumlated cross entropy value. * `int total_frams` Records how many frames have passed. * `bool compressed` The reference distribution can be a one-hot format. This feature is enabled by `layer_conf.compressed`. @@ -43,6 +43,15 @@ Check whether `#self.dim_in == len_in` and `#self.dim_out == len_out`, if violat Abstract method. The layer should return a list containing its parameters. +####nerv.Layer.get\_dim(self)#### +* Returns: + `dim_in`: __table__. + `dim_out`: __table__. +* Parameters: + `self`: __nerv.Layer__. +* Description: + Returns `self.dim_in, self.dim_out`. + ##Examples## * a basic example using __Nerv__ layers to a linear classification. @@ -141,7 +150,8 @@ print('network input&output&error space allocation...') affineI = {dataM} --input to the network is data affineO = {nerv.CuMatrixFloat(data_num, 2)} softmaxI = {affineO[1], labelM} -softmaxO = {nerv.CuMatrixFloat(data_num, 2)} +softmaxO = {} +output = nerv.CuMatrixFloat(data_num, 2) affineE = {nerv.CuMatrixFloat(data_num, 2)} --[[space allocation end]]-- @@ -152,9 +162,9 @@ ce_last = 0 for l = 0, 10, 1 do affineL:propagate(affineI, affineO) softmaxL:propagate(softmaxI, softmaxO) - softmaxO[1]:softmax(softmaxI[1]) + output:softmax(softmaxI[1]) - softmaxL:back_propagate(affineE, nil, softmaxI, softmaxO) + softmaxL:back_propagate(affineE, {}, softmaxI, softmaxO) affineL:update(affineE, affineI, affineO) @@ -162,10 +172,9 @@ for l = 0, 10, 1 do nerv.utils.printf("training iteration %d finished\n", l) nerv.utils.printf("cross entropy: %.8f\n", softmaxL.total_ce - ce_last) ce_last = softmaxL.total_ce - nerv.utils.printf("accurate labels: %d\n", calculate_accurate(softmaxO[1], labelM)) + nerv.utils.printf("accurate labels: %d\n", calculate_accurate(output, labelM)) nerv.utils.printf("total frames processed: %.8f\n", softmaxL.total_frames) end end --[[end training]]-- - -```
\ No newline at end of file +``` diff --git a/doc/nerv_nn.md b/doc/nerv_nn.md index 54c7165..c57447d 100644 --- a/doc/nerv_nn.md +++ b/doc/nerv_nn.md @@ -6,27 +6,251 @@ Part of the [Nerv](../README.md) toolkit. it contains __nerv.LayerRepo__, __nerv.ParamRepo__, and __nerv.DAGLayer__(inherits __nerv.Layer__). ###Class hierarchy and their members### -* __nerv.ParamRepo__ Get parameter object by ID. - * `table param_table` Contains the mapping of parameter ID to parameter file(__nerv.ChunkFile__) +####nerv.ParamRepo#### +Get parameter object by ID. +* `table param_table` Contains the mapping of parameter ID to parameter file(__nerv.ChunkFile__) * __nerv.LayerRepo__ Get layer object by ID. - * `table layers` Contains the mapping of layer ID to layer object. +* `table layers` Contains the mapping of layer ID to layer object. objects. -* __nerv.DAGLayer__ inherits __nerv.Layer__. +####__nerv.DAGLayer__#### +Inherits __nerv.Layer__. +* `layers`: __table__, a mapping from a layer ID to its "ref". A ref is a structure that contains reference to space allocations and other info of the layer. +* `inputs`: __table__, a mapping from the inputs ports of the DAG layer to the input ports of the sublayer, the key is the port number, the value is `{ref, port}`. +* `outputs`:__table__, the counterpart of `inputs`. +* `parsed_conn`: __table__, a list of parsed connections, each entry is of format `{{ref_from, port_from}, {ref_to, port_to}}`. +* `queue`: __table__, a list of "ref"s, the propagation of the DAGLayer will follow this order, and back-propagation will follow a reverse order. + ##Methods## + ###__nerv.ParamRepo__### -* __void ParamRepo:\_\_init(table param_files)__ -`param_files` is a list of file names that stores parameters, the newed __ParamRepo__ will read them from file and store the mapping for future fetching. -* __nerv.Param ParamRepo.get_param(ParamRepo self, string pid, table global_conf)__ -__ParamRepo__ will find the __nerv.ChunkFile__ `pf` that contains parameter of ID `pid` and return `pf:read_chunk(pid, global_conf)`. + +####nerv.ParamRepo:\_\_init(param\_files)#### +* Parameters: + `param_files`: __table__ +* Description: + `param_files` is a list of file names that stores parameters, the newed __ParamRepo__ will read them from file and store the mapping for future fetching. + +####nerv.Param ParamRepo.get_param(ParamRepo self, string pid, table global_conf)#### +* Returns: + __nerv.Layer__ +* Parameters: + `self`: __nerv.ParamRepo__. + `pid`: __string__. + `global_conf`: __table__. +* Description: + __ParamRepo__ will find the __nerv.ChunkFile__ `pf` that contains parameter of ID `pid` and return `pf:read_chunk(pid, global_conf)`. ###__nerv.LayerRepo__### -* __void LayerRepo:\_\_init(table layer_spec, ParamRepo param_repo, table global_conf)__ -__LayerRepo__ will construct the layers specified in `layer_spec`. Every entry in the `layer_spec` table should follow the format below: -``` -layer_spec : {[layer_type1] = llist1, [layer_type2] = llist2, ...} -llist : {layer1, layer2, ...} -layer : layerid = {param_config, layer_config} -param_config : {param1 = paramID1, param2 = paramID2} +####nerv.LayerRepo:\_\_init(layer\_spec, param\_repo, global\_conf)#### +* Returns: + __nerv.LayerRepo__. +* Parameters: + `self`: __nerv.ParamRepo__. + `layer_spec`: __table__. + `param_repo`: __nerv.ParamRepo__. + `global_conf`: __table__. +* Description: + __LayerRepo__ will construct the layers specified in `layer_spec`. Every entry in the `layer_spec` table should follow the format below: + + > layer_spec : {[layer_type1] = llist1, [layer_type2] = llist2, ...} + > llist : {layer1, layer2, ...} + > layer : layerid = {param_config, layer_config} + > param_config : {param1 = paramID1, param2 = paramID2} + + __LayerRepo__ will merge `param_config` into `layer_config` and construct a layer by calling `layer_type(layerid, global_conf, layer_config)`. + +####nerv.LayerRepo.get\_layer(self, lid)#### +* Returns: + __nerv.LayerRepo__, the layer with ID `lid`. +* Parameters: + `self`:__nerv.LayerRepo__. + `lid`:__string__. +* Description: + Returns the layer with ID `lid`. + +###nerv.DAGLayer### +####nerv.DAGLayer:\_\_init(id, global\_conf, layer\_conf)#### +* Returns: + __nerv.DAGLayer__ +* Parameters: + `id`: __string__ + `global_conf`: __table__ + `layer_conf`: __table__ +* Description: + The `layer_conf` should contain `layer_conf.sub_layers` which is a __nerv.LayerRepo__ storing the sub layers of the DAGLayer. It should also contain `layer_conf.connections`, which is a string-to-string mapping table describing the DAG connections. See an example below: + + ``` + dagL = nerv.DAGLayer("DAGL", global_conf, {["dim_in"] = {input_dim, 2}, ["dim_out"] = {}, ["sub_layers"] = layerRepo, + ["connections"] = { + ["<input>[1]"] = "AffineL[1]", + ["AffineL[1]"] = "SoftmaxL[1]", + ["<input>[2]"] = "SoftmaxL[2]", + }}) + ``` + +####nerv.DAGLayer.init(self, batch\_size)#### +* Parameters: + `self`: __nerv.DAGLayer__ + `batch_size`: __int__ +* Description: + This initialization method will allocate space for output and input matrice, and will call `init()` for each of its sub layers. + + +####nerv.DAGLayer.propagate(self, input, output)#### +* Parameters: + `self`: __nerv.DAGLayer__ + `input`: __table__ + `output`: __table__ +* Description: + The same function as __nerv.Layer.propagate__, do propagation for each layer in the order of `self.queue`. + +####nerv.DAGLayer.back\_propagate(self, next\_bp\_err, bp\_err, input, output)#### +* Parameters: + `self`: __nerv.DAGLayer__ + `next_bp_err`: __table__ + `bp_err`: __table__ + `input`: __table__ + `output`: __table__ +* Description: + The same function as __nerv.Layer.back_propagate__, do back-propagation for each layer in the reverse order of `self.queue`. + +####nerv.DAGLayer.update(self, bp\_err, input, output)#### +* Parameters: + `self`: __nerv.DAGLayer__ + `bp_err`: __table__ + `input`: __table__ + `output`: __table__ +* Description: + The same function as __nerv.Layer.update__, do update for each layer in the order of `self.queue`. + +##Examples## +* aaa + ``` -__LayerRepo__ will merge `param_config` into `layer_config` and construct a layer by calling `layer_type(layerid, global_conf, layer_config)`.
\ No newline at end of file +require 'math' + +require 'layer.affine' +require 'layer.softmax_ce' + +--[[Example using DAGLayer, a simple two-classification problem]]-- + +--[[begin global setting and data generation]]-- +global_conf = {lrate = 10, + wcost = 1e-6, + momentum = 0.9, + cumat_type = nerv.CuMatrixFloat, + } + +input_dim = 5 +data_num = 100 +param_fn = "../tmp" +ansV = nerv.CuMatrixFloat(input_dim, 1) +for i = 0, input_dim - 1, 1 do + ansV[i][0] = math.random() - 0.5 +end +ansB = math.random() - 0.5 +print('displaying ansV') +print(ansV) +print('displaying ansB(bias)') +print(ansB) + +dataM = nerv.CuMatrixFloat(data_num, input_dim) +for i = 0, data_num - 1, 1 do + for j = 0, input_dim - 1, 1 do + dataM[i][j] = math.random() * 2 - 1 + end +end +refM = nerv.CuMatrixFloat(data_num, 1) +refM:fill(ansB) +refM:mul(dataM, ansV, 1, 1) --refM = dataM * ansV + ansB + +labelM = nerv.CuMatrixFloat(data_num, 2) +for i = 0, data_num - 1, 1 do + if (refM[i][0] > 0) then + labelM[i][0] = 1 + labelM[i][1] = 0 + else + labelM[i][0] = 0 + labelM[i][1] = 1 + end +end +--[[global setting and data generation end]]-- + + +--[[begin network building]]-- +--parameters +do + local affineL_ltp = nerv.LinearTransParam('AffineL_ltp', global_conf) + affineL_ltp.trans = nerv.CuMatrixFloat(input_dim, 2) + for i = 0, input_dim - 1, 1 do + for j = 0, 1, 1 do + affineL_ltp.trans[i][j] = math.random() - 0.5 + end + end + local affineL_bp = nerv.BiasParam('AffineL_bp', global_conf) + affineL_bp.trans = nerv.CuMatrixFloat(1, 2) + for j = 0, 1, 1 do + affineL_bp.trans[j] = math.random() - 0.5 + end + + local chunk = nerv.ChunkFile(param_fn, 'w') + chunk:write_chunk(affineL_ltp) + chunk:write_chunk(affineL_bp) + chunk:close() + + paramRepo = nerv.ParamRepo({param_fn}) +end + +--layers +layerRepo = nerv.LayerRepo({ + ["nerv.AffineLayer"] = + { + ["AffineL"] = {{["ltp"] = "AffineL_ltp", ["bp"] = "AffineL_bp"}, {["dim_in"] = {input_dim}, ["dim_out"] = {2}}}, + }, + ["nerv.SoftmaxCELayer"] = + { + ["SoftmaxL"] = {{}, {["dim_in"] = {2, 2}, ["dim_out"] = {}}} + }, + }, paramRepo, global_conf) +affineL = layerRepo:get_layer("AffineL") +softmaxL = layerRepo:get_layer("SoftmaxL") +print('layers initializing...') +dagL = nerv.DAGLayer("DAGL", global_conf, {["dim_in"] = {input_dim, 2}, ["dim_out"] = {}, ["sub_layers"] = layerRepo, + ["connections"] = { + ["<input>[1]"] = "AffineL[1]", + ["AffineL[1]"] = "SoftmaxL[1]", + ["<input>[2]"] = "SoftmaxL[2]", + }}) +dagL:init(data_num) +--affineL:init() +--softmaxL:init() +--[[network building end]]-- + + +--[[begin space allocation]]-- +print('network input&output&error space allocation...') +dagL_input = {dataM, labelM} +dagL_output = {} +dagL_err = {} +dagL_ierr = {nerv.CuMatrixFloat(data_num, input_dim), nerv.CuMatrixFloat(data_num, 2)} +--[[space allocation end]]-- + + +--[[begin training]]-- +ce_last = 0 +for l = 0, 10, 1 do + dagL:propagate(dagL_input, dagL_output) + dagL:back_propagate(dagL_ierr, dagL_err, dagL_input, dagL_output) + dagL:update(dagL_err, dagL_input, dagL_output) + + if (l % 2 == 0) then + nerv.utils.printf("training iteration %d finished\n", l) + nerv.utils.printf("cross entropy: %.8f\n", softmaxL.total_ce - ce_last) + --nerv.utils.printf("accurate labels: %d\n", calculate_accurate(output, labelM)) + nerv.utils.printf("total frames processed: %.8f\n", softmaxL.total_frames) + end + ce_last = softmaxL.total_ce +end +--[[end training]]-- +```
\ No newline at end of file diff --git a/matrix/init.lua b/matrix/init.lua index 7bbc6a4..1a8925f 100644 --- a/matrix/init.lua +++ b/matrix/init.lua @@ -27,6 +27,23 @@ function nerv.Matrix:__tostring__() return table.concat(strt) end +-- gen: a function takes take indices of the matrix and return the generated +-- all entrys in the matrix will be assigned by calling gen(i, j) +function nerv.Matrix:generate(gen) + if (self:nrow() == 1) then + for j = 0, self:ncol() - 1 do + self[j] = gen(j) + end + else + for i = 0, self:nrow() - 1 do + local row = self[i] + for j = 0, self:ncol() - 1 do + row[j] = gen(i, j) + end + end + end +end + nerv.MMatrixInt.fmt = "%d " function nerv.CuMatrix:__add__(b) |