summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--nerv/examples/lmptb/m-tests/tnn_test.lua13
-rw-r--r--nerv/examples/lmptb/rnn/tnn.lua6
2 files changed, 14 insertions, 5 deletions
diff --git a/nerv/examples/lmptb/m-tests/tnn_test.lua b/nerv/examples/lmptb/m-tests/tnn_test.lua
index a778dea..7a8519e 100644
--- a/nerv/examples/lmptb/m-tests/tnn_test.lua
+++ b/nerv/examples/lmptb/m-tests/tnn_test.lua
@@ -82,7 +82,7 @@ function prepare_layers(global_conf, paramRepo)
["outputL"] = {{["ltp"] = "ltp_ho", ["bp"] = "bp_o"}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.vocab:size()}}},
},
- ["nerv.SoftmaxCELayer"] = {
+ ["nerv.SoftmaxCELayerT"] = {
["softmaxL"] = {{}, {["dim_in"] = {global_conf.vocab:size(), global_conf.vocab:size()}, ["dim_out"] = {1}}},
},
}
@@ -164,6 +164,15 @@ function lm_process_file(global_conf, fn, tnn, do_train)
r, feeds = tnn:getFeedFromReader(reader)
if (r == false) then break end
+
+ for t = 1, global_conf.chunk_size do
+ tnn.err_inputs_m[t][1]:fill(1)
+ for i = 1, global_conf.batch_size do
+ if (bit.bor(feeds.flags_now[t][i], nerv.TNN.FC.HAS_LABEL) == 0) then
+ tnn.err_inputs_m[t][1][i][0] = 0
+ end
+ end
+ end
--[[
for j = 1, global_conf.chunk_size, 1 do
@@ -242,7 +251,7 @@ global_conf = {
valid_fn = valid_fn,
test_fn = test_fn,
sche_log_pre = "[SCHEDULER]:",
- log_w_num = 10000, --give a message when log_w_num words have been processed
+ log_w_num = 40000, --give a message when log_w_num words have been processed
timer = nerv.Timer()
}
diff --git a/nerv/examples/lmptb/rnn/tnn.lua b/nerv/examples/lmptb/rnn/tnn.lua
index 8c3963c..f470190 100644
--- a/nerv/examples/lmptb/rnn/tnn.lua
+++ b/nerv/examples/lmptb/rnn/tnn.lua
@@ -379,7 +379,7 @@ function TNN:propagate_dfs(ref, t)
end
end
end
- ref.layer:propagate(ref.inputs_m[t], ref.outputs_m[t]) --propagate!
+ ref.layer:propagate(ref.inputs_m[t], ref.outputs_m[t], t) --propagate!
if (bit.bor(self.feeds_now.flagsPack_now[t], bit.bor(nerv.TNN.FC.SEQ_START, nerv.TNN.FC.SEQ_END)) > 0) then --restore cross-border history
for i = 1, self.batch_size do
local seq_start = bit.bor(self.feeds_now.flags_now[t][i], nerv.TNN.FC.SEQ_START)
@@ -495,10 +495,10 @@ function TNN:backpropagate_dfs(ref, t, do_update)
end
end
if (do_update == false) then
- ref.layer:back_propagate(ref.err_inputs_m[t], ref.err_outputs_m[t], ref.inputs_m[t], ref.outputs_m[t])
+ ref.layer:back_propagate(ref.err_inputs_m[t], ref.err_outputs_m[t], ref.inputs_m[t], ref.outputs_m[t], t)
else
--print(ref.err_inputs_m[t][1])
- ref.layer:update(ref.err_inputs_m[t], ref.inputs_m[t], ref.outputs_m[t])
+ ref.layer:update(ref.err_inputs_m[t], ref.inputs_m[t], ref.outputs_m[t], t)
end
for i = 1, #ref.dim_in do
if (ref.err_outputs_b[t][i] == true) then