diff options
-rw-r--r-- | nerv/Makefile | 2 | ||||
-rw-r--r-- | nerv/examples/seq_chime.lua | 185 | ||||
-rw-r--r-- | nerv/examples/seq_trainer.lua | 86 | ||||
-rw-r--r-- | nerv/layer/affine.lua | 4 | ||||
-rw-r--r-- | nerv/layer/affine_recurrent.lua | 4 | ||||
-rw-r--r-- | nerv/layer/bias.lua | 4 | ||||
-rw-r--r-- | nerv/layer/combiner.lua | 6 | ||||
-rw-r--r-- | nerv/layer/init.lua | 1 | ||||
-rw-r--r-- | nerv/layer/mpe.lua | 52 | ||||
-rw-r--r-- | nerv/layer/mse.lua | 8 | ||||
-rw-r--r-- | nerv/layer/sigmoid.lua | 4 | ||||
-rw-r--r-- | nerv/layer/softmax.lua | 4 | ||||
-rw-r--r-- | nerv/layer/softmax_ce.lua | 7 | ||||
-rw-r--r-- | nerv/layer/window.lua | 4 | ||||
-rw-r--r-- | nerv/lib/matrix/generic/matrix.c | 1 | ||||
-rw-r--r-- | nerv/nn/layer_dag.lua | 40 |
16 files changed, 407 insertions, 5 deletions
diff --git a/nerv/Makefile b/nerv/Makefile index b5d26bd..b874a94 100644 --- a/nerv/Makefile +++ b/nerv/Makefile @@ -31,7 +31,7 @@ OBJS := $(CORE_OBJS) $(NERV_OBJS) $(LUAT_OBJS) LIBS := $(INST_LIBDIR)/libnerv.so $(LIB_PATH)/libnervcore.so $(LIB_PATH)/libluaT.so LUA_LIBS := matrix/init.lua io/init.lua init.lua \ layer/init.lua layer/affine.lua layer/sigmoid.lua layer/softmax_ce.lua layer/softmax.lua \ - layer/window.lua layer/bias.lua layer/combiner.lua layer/mse.lua layer/affine_recurrent.lua\ + layer/window.lua layer/bias.lua layer/combiner.lua layer/mse.lua layer/affine_recurrent.lua layer/mpe.lua \ nn/init.lua nn/layer_repo.lua nn/param_repo.lua nn/layer_dag.lua \ io/sgd_buffer.lua diff --git a/nerv/examples/seq_chime.lua b/nerv/examples/seq_chime.lua new file mode 100644 index 0000000..be723ca --- /dev/null +++ b/nerv/examples/seq_chime.lua @@ -0,0 +1,185 @@ +require 'kaldi_io' +gconf = {lrate = 0.00001, wcost = 0, momentum = 0.0, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + frm_ext = 5, + tr_scp = "ark,s,cs:/slfs6/users/ymz09/kaldi/src/featbin/copy-feats scp:/slfs5/users/ymz09/chime/baseline/ASR/exp/tri4a_dnn_tr05_multi_enhanced_smbr/train.scp ark:- |", + initialized_param = {"/slfs6/users/ymz09/nerv-project/nerv/nerv-speech/kaldi_seq/test/chime3_init.nerv", + "/slfs6/users/ymz09/nerv-project/nerv/nerv-speech/kaldi_seq/test/chime3_global_transf.nerv"}, + debug = false} + +function make_layer_repo(param_repo) + local layer_repo = nerv.LayerRepo( + { + -- global transf + ["nerv.BiasLayer"] = + { + blayer1 = {{bias = "bias1"}, {dim_in = {440}, dim_out = {440}}}, + blayer2 = {{bias = "bias2"}, {dim_in = {440}, dim_out = {440}}} + }, + ["nerv.WindowLayer"] = + { + wlayer1 = {{window = "window1"}, {dim_in = {440}, dim_out = {440}}}, + wlayer2 = {{window = "window2"}, {dim_in = {440}, dim_out = {440}}} + }, + -- biased linearity + ["nerv.AffineLayer"] = + { + affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, + {dim_in = {440}, dim_out = {2048}}}, + affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"}, + {dim_in = {2048}, dim_out = {2011}}} + }, + ["nerv.SigmoidLayer"] = + { + sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}} + }, + ["nerv.MPELayer"] = + { + mpe_crit = {{}, {dim_in = {2011, -1}, dim_out = {1}, + cmd = { + arg = "--class-frame-counts=/slfs5/users/ymz09/chime/baseline/ASR/exp/tri4a_dnn_tr05_multi_enhanced/ali_train_pdf.counts --acoustic-scale=0.1 --lm-scale=1.0 --learn-rate=0.00001 --do-smbr=true --verbose=1", + mdl = "/slfs5/users/ymz09/chime/baseline/ASR/exp/tri4a_dnn_tr05_multi_enhanced_ali/final.mdl", + lat = "scp:/slfs5/users/ymz09/chime/baseline/ASR/exp/tri4a_dnn_tr05_multi_enhanced_denlats/lat.scp", + ali = "ark:gunzip -c /slfs5/users/ymz09/chime/baseline/ASR/exp/tri4a_dnn_tr05_multi_enhanced_ali/ali.*.gz |" + } + } + } + }, + ["nerv.SoftmaxLayer"] = -- softmax for decode output + { + softmax = {{}, {dim_in = {2011}, dim_out = {2011}}} + } + }, param_repo, gconf) + + layer_repo:add_layers( + { + ["nerv.DAGLayer"] = + { + global_transf = {{}, { + dim_in = {440}, dim_out = {440}, + sub_layers = layer_repo, + connections = { + ["<input>[1]"] = "blayer1[1]", + ["blayer1[1]"] = "wlayer1[1]", + ["wlayer1[1]"] = "blayer2[1]", + ["blayer2[1]"] = "wlayer2[1]", + ["wlayer2[1]"] = "<output>[1]" + } + }}, + main = {{}, { + dim_in = {440}, dim_out = {2011}, + sub_layers = layer_repo, + connections = { + ["<input>[1]"] = "affine0[1]", + ["affine0[1]"] = "sigmoid0[1]", + ["sigmoid0[1]"] = "affine1[1]", + ["affine1[1]"] = "sigmoid1[1]", + ["sigmoid1[1]"] = "affine2[1]", + ["affine2[1]"] = "sigmoid2[1]", + ["sigmoid2[1]"] = "affine3[1]", + ["affine3[1]"] = "sigmoid3[1]", + ["sigmoid3[1]"] = "affine4[1]", + ["affine4[1]"] = "sigmoid4[1]", + ["sigmoid4[1]"] = "affine5[1]", + ["affine5[1]"] = "sigmoid5[1]", + ["sigmoid5[1]"] = "affine6[1]", + ["affine6[1]"] = "sigmoid6[1]", + ["sigmoid6[1]"] = "affine7[1]", + ["affine7[1]"] = "<output>[1]" + } + }} + } + }, param_repo, gconf) + + layer_repo:add_layers( + { + ["nerv.DAGLayer"] = + { + mpe_output = {{}, { + dim_in = {440, -1}, dim_out = {1}, + sub_layers = layer_repo, + connections = { + ["<input>[1]"] = "main[1]", + ["main[1]"] = "mpe_crit[1]", + ["<input>[2]"] = "mpe_crit[2]", + ["mpe_crit[1]"] = "<output>[1]" + } + }}, + softmax_output = {{}, { + dim_in = {440}, dim_out = {2011}, + sub_layers = layer_repo, + connections = { + ["<input>[1]"] = "main[1]", + ["main[1]"] = "softmax[1]", + ["softmax[1]"] = "<output>[1]" + } + }} + } + }, param_repo, gconf) + + return layer_repo +end + +function get_network(layer_repo) + return layer_repo:get_layer("mpe_output") +end + +function get_decode_network(layer_repo) + return layer_repo:get_layer("softmax_output") +end + +function get_global_transf(layer_repo) + return layer_repo:get_layer("global_transf") +end + +function make_readers(feature_rspecifier, layer_repo) + return { + {reader = nerv.KaldiReader(gconf, + { + id = "main_scp", + feature_rspecifier = feature_rspecifier, + frm_ext = gconf.frm_ext, + global_transf = layer_repo:get_layer("global_transf"), + mlfs = {} + }) + } + } +end + +function get_input_order() + return {{id = "main_scp", global_transf = true}, + {id = "key"}} +end + +function get_accuracy(layer_repo) + local mpe_crit = layer_repo:get_layer("mpe_crit") + return mpe_crit.total_correct / mpe_crit.total_frames * 100 +end + +function print_stat(layer_repo) + local mpe_crit = layer_repo:get_layer("mpe_crit") + nerv.info("*** training stat begin ***") + nerv.printf("correct:\t\t%d\n", mpe_crit.total_correct) + nerv.printf("frames:\t\t\t%d\n", mpe_crit.total_frames) + nerv.printf("accuracy:\t\t%.3f%%\n", get_accuracy(layer_repo)) + nerv.info("*** training stat end ***") +end diff --git a/nerv/examples/seq_trainer.lua b/nerv/examples/seq_trainer.lua new file mode 100644 index 0000000..df96e68 --- /dev/null +++ b/nerv/examples/seq_trainer.lua @@ -0,0 +1,86 @@ +function build_trainer(ifname) + local param_repo = nerv.ParamRepo() + param_repo:import(ifname, nil, gconf) + local layer_repo = make_layer_repo(param_repo) + local network = get_network(layer_repo) + local global_transf = get_global_transf(layer_repo) + local input_order = get_input_order() + local iterative_trainer = function (prefix, scp_file, bp) + local readers = make_readers(scp_file, layer_repo) + -- initialize the network + network:init(1) + gconf.cnt = 0 + for ri = 1, #readers, 1 do + while true do + local data = readers[ri].reader:get_data() + if data == nil then + break + end + -- prine stat periodically + gconf.cnt = gconf.cnt + 1 + if gconf.cnt == 1000 then + print_stat(layer_repo) + nerv.CuMatrix.print_profile() + nerv.CuMatrix.clear_profile() + gconf.cnt = 0 + -- break + end + local input = {} + -- if gconf.cnt == 1000 then break end + for i, e in ipairs(input_order) do + local id = e.id + if data[id] == nil then + nerv.error("input data %s not found", id) + end + local transformed + if e.global_transf then + local batch = gconf.cumat_type(data[id]:nrow(), data[id]:ncol()) + batch:copy_fromh(data[id]) + transformed = nerv.speech_utils.global_transf(batch, + global_transf, + gconf.frm_ext or 0, 0, + gconf) + else + transformed = data[id] + end + table.insert(input, transformed) + end + err_output = {input[1]:create()} + network:batch_resize(input[1]:nrow()) + if network:propagate(input, {{}}) == true then + network:back_propagate({{}}, err_output, input, {{}}) + network:update({{}}, input, {{}}) + end + -- collect garbage in-time to save GPU memory + collectgarbage("collect") + end + end + print_stat(layer_repo) + nerv.CuMatrix.print_profile() + nerv.CuMatrix.clear_profile() + if prefix ~= nil then + nerv.info("writing back...") + local fname = string.format("%s_tr%.3f.nerv", + prefix, get_accuracy(layer_repo)) + network:get_params():export(fname, nil) + end + return get_accuracy(layer_repo) + end + return iterative_trainer +end + +dofile(arg[1]) + +local pf0 = gconf.initialized_param +local trainer = build_trainer(pf0) + +local i = 1 +nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate) +local accu_tr = trainer(string.format("%s_%s_iter_%d_lr%f", +string.gsub( +(string.gsub(pf0[1], "(.*/)(.*)", "%2")), +"(.*)%..*", "%1"), +os.date("%Y%m%d%H%M%S"), +i, gconf.lrate), gconf.tr_scp, true) +nerv.info("[TR] training set %d: %.3f", i, accu_tr) + diff --git a/nerv/layer/affine.lua b/nerv/layer/affine.lua index 00cbcfb..6c90e3e 100644 --- a/nerv/layer/affine.lua +++ b/nerv/layer/affine.lua @@ -60,6 +60,10 @@ function AffineLayer:init(batch_size) self.bp:train_init() end +function AffineLayer:batch_resize(batch_size) + -- do nothing +end + function AffineLayer:update(bp_err, input, output) if self.direct_update then self.ltp.correction:mul(input[1], bp_err[1], 1.0, gconf.momentum, 'T', 'N') diff --git a/nerv/layer/affine_recurrent.lua b/nerv/layer/affine_recurrent.lua index 59d259c..92d98e2 100644 --- a/nerv/layer/affine_recurrent.lua +++ b/nerv/layer/affine_recurrent.lua @@ -37,6 +37,10 @@ function Recurrent:init(batch_size) self.bp:train_init() end +function Recurrent:batch_resize(batch_size) + -- do nothing +end + function Recurrent:update(bp_err, input, output) if (self.direct_update == true) then local ltp_hh = self.ltp_hh.trans diff --git a/nerv/layer/bias.lua b/nerv/layer/bias.lua index c99274d..7e9fd46 100644 --- a/nerv/layer/bias.lua +++ b/nerv/layer/bias.lua @@ -18,6 +18,10 @@ function BiasLayer:init() end end +function BiasLayer:batch_resize(batch_size) + -- do nothing +end + function BiasLayer:propagate(input, output) output[1]:copy_fromd(input[1]) output[1]:add_row(self.bias.trans, 1.0) diff --git a/nerv/layer/combiner.lua b/nerv/layer/combiner.lua index 7bd7617..1bcfdfb 100644 --- a/nerv/layer/combiner.lua +++ b/nerv/layer/combiner.lua @@ -30,6 +30,12 @@ function CombinerLayer:init(batch_size) self.sum = self.gconf.cumat_type(batch_size, dim) end +function CombinerLayer:batch_resize(batch_size) + if self.sum:nrow() ~= batch_size then + self.sum = self.gconf.cumat_type(batch_size, self.dim_in[1]) + end +end + function CombinerLayer:update(bp_err, input, output) end diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua index 6861b0e..b74422f 100644 --- a/nerv/layer/init.lua +++ b/nerv/layer/init.lua @@ -79,3 +79,4 @@ nerv.include('mse.lua') nerv.include('combiner.lua') nerv.include('affine_recurrent.lua') nerv.include('softmax.lua') +nerv.include('mpe.lua') diff --git a/nerv/layer/mpe.lua b/nerv/layer/mpe.lua new file mode 100644 index 0000000..ec8a8f3 --- /dev/null +++ b/nerv/layer/mpe.lua @@ -0,0 +1,52 @@ +require 'libkaldiseq' +local MPELayer = nerv.class("nerv.MPELayer", "nerv.Layer") + +function MPELayer:__init(id, global_conf, layer_conf) + self.id = id + self.gconf = global_conf + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.arg = layer_conf.cmd.arg + self.mdl = layer_conf.cmd.mdl + self.lat = layer_conf.cmd.lat + self.ali = layer_conf.cmd.ali + self:check_dim_len(2, -1) -- two inputs: nn output and utt key +end + +function MPELayer:init(batch_size) + self.total_correct = 0 + self.total_frames = 0 + self.kaldi_mpe = nerv.KaldiMPE(self.arg, self.mdl, self.lat, self.ali) + if self.kaldi_mpe == nil then + nerv.error("kaldi arguments is expected: %s %s %s %s", self.arg, + self.mdl, self.lat, self.ali) + end +end + +function MPELayer:batch_resize(batch_size) + -- do nothing +end + +function MPELayer:update(bp_err, input, output) + -- no params, therefore do nothing +end + +function MPELayer:propagate(input, output) + self.valid = false + self.valid = self.kaldi_mpe:check(input[1], input[2]) + return self.valid +end + +function MPELayer:back_propagate(bp_err, next_bp_err, input, output) + if self.valid ~= true then + nerv.error("kaldi sequence training back_propagate fail") + end + local mmat = input[1]:new_to_host() + next_bp_err[1]:copy_fromh(self.kaldi_mpe:calc_diff(mmat, input[2])) + self.total_frames = self.total_frames + self.kaldi_mpe:get_num_frames() + self.total_correct = self.total_correct + self.kaldi_mpe:get_utt_frame_acc() +end + +function MPELayer:get_params() + return nerv.ParamRepo({}) +end diff --git a/nerv/layer/mse.lua b/nerv/layer/mse.lua index 2516998..0ee3080 100644 --- a/nerv/layer/mse.lua +++ b/nerv/layer/mse.lua @@ -20,6 +20,14 @@ function MSELayer:init(batch_size) self.diff = self.mse:create() end +function MSELayer:batch_resize(batch_size) + if self.mse:nrow() ~= batch_resize then + self.mse = self.gconf.cumat_type(batch_size, self.dim_in[1]) + self.mse_sum = self.gconf.cumat_type(batch_size, 1) + self.diff = self.mse:create() + end +end + function MSELayer:update(bp_err, input, output) -- no params, therefore do nothing end diff --git a/nerv/layer/sigmoid.lua b/nerv/layer/sigmoid.lua index dfd09eb..0a8bcdc 100644 --- a/nerv/layer/sigmoid.lua +++ b/nerv/layer/sigmoid.lua @@ -14,6 +14,10 @@ function SigmoidLayer:init() end end +function SigmoidLayer:batch_resize(batch_size) + -- do nothing +end + function SigmoidLayer:update(bp_err, input, output) -- no params, therefore do nothing end diff --git a/nerv/layer/softmax.lua b/nerv/layer/softmax.lua index e979ebf..4205b66 100644 --- a/nerv/layer/softmax.lua +++ b/nerv/layer/softmax.lua @@ -14,6 +14,10 @@ function SoftmaxLayer:init(batch_size) end end +function SoftmaxLayer:batch_resize(batch_size) + -- do nothing +end + function SoftmaxLayer:update(bp_err, input, output) -- no params, therefore do nothing end diff --git a/nerv/layer/softmax_ce.lua b/nerv/layer/softmax_ce.lua index f878a2f..9071e86 100644 --- a/nerv/layer/softmax_ce.lua +++ b/nerv/layer/softmax_ce.lua @@ -23,6 +23,13 @@ function SoftmaxCELayer:init(batch_size) self.ce = self.softmax:create() end +function SoftmaxCELayer:batch_resize(batch_size) + if self.softmax:nrow() ~= batch_resize then + self.softmax = self.gconf.cumat_type(batch_size, self.dim_in[1]) + self.ce = self.softmax:create() + end +end + function SoftmaxCELayer:update(bp_err, input, output) -- no params, therefore do nothing end diff --git a/nerv/layer/window.lua b/nerv/layer/window.lua index 4e9a3b1..8eed352 100644 --- a/nerv/layer/window.lua +++ b/nerv/layer/window.lua @@ -18,6 +18,10 @@ function WindowLayer:init() end end +function WindowLayer:batch_resize(batch_size) + -- do nothing +end + function WindowLayer:propagate(input, output) output[1]:copy_fromd(input[1]) output[1]:scale_rows_by_row(self.window.trans) diff --git a/nerv/lib/matrix/generic/matrix.c b/nerv/lib/matrix/generic/matrix.c index 6cb3dc0..4319e13 100644 --- a/nerv/lib/matrix/generic/matrix.c +++ b/nerv/lib/matrix/generic/matrix.c @@ -4,6 +4,7 @@ /* FIXME: malloc failure detection */ void nerv_matrix_(data_free)(Matrix *self, Status *status) { + if(*self->data_ref == 0) return; assert(*self->data_ref > 0); if (--(*self->data_ref) == 0) { diff --git a/nerv/nn/layer_dag.lua b/nerv/nn/layer_dag.lua index f69d31c..73bb77d 100644 --- a/nerv/nn/layer_dag.lua +++ b/nerv/nn/layer_dag.lua @@ -79,7 +79,7 @@ function DAGLayer:__init(id, global_conf, layer_conf) end table.insert(parsed_conn, - {{ref_from, port_from}, {ref_to, port_to}}) + {{ref_from, port_from}, {ref_to, port_to}}) table.insert(ref_from.next_layers, ref_to) -- add edge ref_to.in_deg = ref_to.in_deg + 1 -- increase the in-degree of the target layer end @@ -140,8 +140,11 @@ function DAGLayer:init(batch_size) ref_from, port_from = unpack(conn[1]) ref_to, port_to = unpack(conn[2]) _, output_dim = ref_from.layer:get_dim() - local mid = self.gconf.cumat_type(batch_size, - output_dim[port_from]) + local dim = 1 + if output_dim[port_from] > 0 then + dim = output_dim[port_from] + end + local mid = self.gconf.cumat_type(batch_size, dim) local err_mid = mid:create() ref_from.outputs[port_from] = mid @@ -176,6 +179,33 @@ function DAGLayer:init(batch_size) end end +function DAGLayer:batch_resize(batch_size) + self.gconf.batch_size = batch_size + + for i, conn in ipairs(self.parsed_conn) do + local _, output_dim + local ref_from, port_from, ref_to, port_to + ref_from, port_from = unpack(conn[1]) + ref_to, port_to = unpack(conn[2]) + _, output_dim = ref_from.layer:get_dim() + + if ref_from.outputs[port_from]:nrow() ~= batch_size and output_dim[port_from] > 0 then + local mid = self.gconf.cumat_type(batch_size, output_dim[port_from]) + local err_mid = mid:create() + + ref_from.outputs[port_from] = mid + ref_to.inputs[port_to] = mid + + ref_from.err_inputs[port_from] = err_mid + ref_to.err_outputs[port_to] = err_mid + end + end + for id, ref in pairs(self.layers) do + ref.layer:batch_resize(batch_size) + end + collectgarbage("collect") +end + function DAGLayer:set_inputs(input) for i = 1, #self.dim_in do if input[i] == nil then @@ -228,11 +258,13 @@ end function DAGLayer:propagate(input, output) self:set_inputs(input) self:set_outputs(output) + local ret = false for i = 1, #self.queue do local ref = self.queue[i] -- print(ref.layer.id) - ref.layer:propagate(ref.inputs, ref.outputs) + ret = ref.layer:propagate(ref.inputs, ref.outputs) end + return ret end function DAGLayer:back_propagate(bp_err, next_bp_err, input, output) |