diff options
-rw-r--r-- | nerv/examples/lmptb/lmptb/layer/select_linear.lua | 4 | ||||
-rw-r--r-- | nerv/examples/lmptb/rnn/init.lua | 21 | ||||
-rw-r--r-- | nerv/examples/lmptb/rnn/layers/gate_fff.lua | 71 | ||||
-rw-r--r-- | nerv/examples/lmptb/rnn/layersT/softmax_ce_t.lua (renamed from nerv/examples/lmptb/rnn/softmax_ce_t.lua) | 0 | ||||
-rw-r--r-- | nerv/examples/lmptb/tnn_ptb_main.lua | 73 | ||||
-rw-r--r-- | nerv/layer/affine.lua | 4 | ||||
-rw-r--r-- | nerv/layer/affine_recurrent.lua | 4 | ||||
-rw-r--r-- | nerv/layer/init.lua | 21 | ||||
-rw-r--r-- | nerv/nn/param_repo.lua | 8 |
9 files changed, 158 insertions, 48 deletions
diff --git a/nerv/examples/lmptb/lmptb/layer/select_linear.lua b/nerv/examples/lmptb/lmptb/layer/select_linear.lua index e96296f..580b9c5 100644 --- a/nerv/examples/lmptb/lmptb/layer/select_linear.lua +++ b/nerv/examples/lmptb/lmptb/layer/select_linear.lua @@ -10,9 +10,9 @@ function SL:__init(id, global_conf, layer_conf) self.dim_out = layer_conf.dim_out self.gconf = global_conf - self.ltp = layer_conf.ltp self.vocab = layer_conf.vocab - + self.ltp = self:find_param("ltp", layer_conf, global_conf, nerv.LinearTransParam, {self.vocab:size(), self.dim_out[1]}) --layer_conf.ltp + self:check_dim_len(1, 1) end diff --git a/nerv/examples/lmptb/rnn/init.lua b/nerv/examples/lmptb/rnn/init.lua index 0e08cb6..6507582 100644 --- a/nerv/examples/lmptb/rnn/init.lua +++ b/nerv/examples/lmptb/rnn/init.lua @@ -1,26 +1,26 @@ -local Layer = nerv.class('nerv.LayerT') +local LayerT = nerv.class('nerv.LayerT') -function Layer:__init(id, global_conf, layer_conf) +function LayerT:__init(id, global_conf, layer_conf) nerv.error_method_not_implemented() end -function Layer:init(batch_size, chunk_size) +function LayerT:init(batch_size, chunk_size) nerv.error_method_not_implemented() end -function Layer:update(bp_err, input, output, t) +function LayerT:update(bp_err, input, output, t) nerv.error_method_not_implemented() end -function Layer:propagate(input, output, t) +function LayerT:propagate(input, output, t) nerv.error_method_not_implemented() end -function Layer:back_propagate(bp_err, next_bp_err, input, output, t) +function LayerT:back_propagate(bp_err, next_bp_err, input, output, t) nerv.error_method_not_implemented() end -function Layer:check_dim_len(len_in, len_out) +function LayerT:check_dim_len(len_in, len_out) local expected_in = #self.dim_in local expected_out = #self.dim_out if len_in > 0 and expected_in ~= len_in then @@ -33,13 +33,14 @@ function Layer:check_dim_len(len_in, len_out) end end -function Layer:get_params() +function LayerT:get_params() nerv.error_method_not_implemented() end -function Layer:get_dim() +function LayerT:get_dim() return self.dim_in, self.dim_out end nerv.include('tnn.lua') -nerv.include('softmax_ce_t.lua') +nerv.include('layersT/softmax_ce_t.lua') +nerv.include('layers/gate_fff.lua') diff --git a/nerv/examples/lmptb/rnn/layers/gate_fff.lua b/nerv/examples/lmptb/rnn/layers/gate_fff.lua new file mode 100644 index 0000000..751dde1 --- /dev/null +++ b/nerv/examples/lmptb/rnn/layers/gate_fff.lua @@ -0,0 +1,71 @@ +local GateFFFLayer = nerv.class('nerv.GateFFFLayer', 'nerv.Layer') + +function GateFFFLayer:__init(id, global_conf, layer_conf) + self.id = id + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.gconf = global_conf + + self.ltp1 = self:find_param("ltp1", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[1], self.dim_out[1]}) --layer_conf.ltp + self.ltp2 = self:find_param("ltp2", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp + self.ltp3 = self:find_param("ltp3", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[3], self.dim_out[1]}) --layer_conf.ltp + self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]})--layer_conf.bp + + self:check_dim_len(3, 1) -- exactly one input and one output +end + +function GateFFFLayer:init(batch_size) + if self.ltp1.trans:ncol() ~= self.bp.trans:ncol() or + self.ltp2.trans:ncol() ~= self.bp.trans:ncol() or + self.ltp3.trans:ncol() ~= self.bp.trans:ncol() then + nerv.error("mismatching dimensions of linear transform and bias paramter") + end + if self.dim_in[1] ~= self.ltp1.trans:nrow() or + self.dim_in[2] ~= self.ltp2.trans:nrow() or + self.dim_in[3] ~= self.ltp3.trans:nrow() then + nerv.error("mismatching dimensions of linear transform parameter and input") + end + if self.dim_out[1] ~= self.ltp1.trans:ncol() then + nerv.error("mismatching dimensions of linear transform parameter and output") + end + self.ltp1:train_init() + self.ltp2:train_init() + self.ltp3:train_init() + self.bp:train_init() + self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1]) +end + +function GateFFFLayer:batch_resize(batch_size) + if self.err_m:nrow() ~= batch_size then + self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1]) + end +end + +function GateFFFLayer:propagate(input, output) + -- apply linear transform + output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N') + output[1]:mul(input[2], self.ltp2.trans, 1.0, 1.0, 'N', 'N') + output[1]:mul(input[3], self.ltp3.trans, 1.0, 1.0, 'N', 'N') + -- add bias + output[1]:add_row(self.bp.trans, 1.0) + output[1]:sigmoid(output[1]) +end + +function GateFFFLayer:back_propagate(bp_err, next_bp_err, input, output) + self.err_bakm:sigmoid_grad(bp_err[1], output[1]) + next_bp_err[1]:mul(self.err_bakm, self.ltp1.trans, 1.0, 0.0, 'N', 'T') + next_bp_err[2]:mul(self.err_bakm, self.ltp2.trans, 1.0, 0.0, 'N', 'T') + next_bp_err[3]:mul(self.err_bakm, self.ltp3.trans, 1.0, 0.0, 'N', 'T') +end + +function GateFFFLayer:update(bp_err, input, output) + self.err_bakm:sigmoid_grad(bp_err[1], output[1]) + self.ltp1:update_by_err_input(self.err_bakm, input[1]) + self.ltp2:update_by_err_input(self.err_bakm, input[2]) + self.ltp3:update_by_err_input(self.err_bakm, input[3]) + self.bp:update_by_gradient(self.err_bakm:colsum()) +end + +function GateFFFLayer:get_params() + return nerv.ParamRepo({self.ltp1, self.ltp2, self.ltp3, self.bp}) +end diff --git a/nerv/examples/lmptb/rnn/softmax_ce_t.lua b/nerv/examples/lmptb/rnn/layersT/softmax_ce_t.lua index dddb05a..dddb05a 100644 --- a/nerv/examples/lmptb/rnn/softmax_ce_t.lua +++ b/nerv/examples/lmptb/rnn/layersT/softmax_ce_t.lua diff --git a/nerv/examples/lmptb/tnn_ptb_main.lua b/nerv/examples/lmptb/tnn_ptb_main.lua index 50286c9..3096a3f 100644 --- a/nerv/examples/lmptb/tnn_ptb_main.lua +++ b/nerv/examples/lmptb/tnn_ptb_main.lua @@ -17,8 +17,14 @@ local LMTrainer = nerv.LMTrainer function prepare_parameters(global_conf, iter) printf("%s preparing parameters...\n", global_conf.sche_log_pre) + global_conf.paramRepo = nerv.ParamRepo() + local paramRepo = global_conf.paramRepo + if iter == -1 then --first time - printf("%s first time, generating parameters...\n", global_conf.sche_log_pre) + printf("%s first time, prepare some pre-set parameters, and leaving other parameters to auto-generation...\n", global_conf.sche_log_pre) + local f = nerv.ChunkFile(global_conf.param_fn .. '.0', 'w') + f:close() + --[[ ltp_ih = nerv.LinearTransParam("ltp_ih", global_conf) ltp_ih.trans = global_conf.cumat_type(global_conf.vocab:size(), global_conf.hidden_size) --index 0 is for zero, others correspond to vocab index(starting from 1) ltp_ih.trans:generate(global_conf.param_random) @@ -27,47 +33,48 @@ function prepare_parameters(global_conf, iter) ltp_hh.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.hidden_size) ltp_hh.trans:generate(global_conf.param_random) - ltp_ho = nerv.LinearTransParam("ltp_ho", global_conf) - ltp_ho.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.vocab:size()) - ltp_ho.trans:generate(global_conf.param_random) + --ltp_ho = nerv.LinearTransParam("ltp_ho", global_conf) + --ltp_ho.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.vocab:size()) + --ltp_ho.trans:generate(global_conf.param_random) bp_h = nerv.BiasParam("bp_h", global_conf) bp_h.trans = global_conf.cumat_type(1, global_conf.hidden_size) bp_h.trans:generate(global_conf.param_random) - bp_o = nerv.BiasParam("bp_o", global_conf) - bp_o.trans = global_conf.cumat_type(1, global_conf.vocab:size()) - bp_o.trans:generate(global_conf.param_random) + --bp_o = nerv.BiasParam("bp_o", global_conf) + --bp_o.trans = global_conf.cumat_type(1, global_conf.vocab:size()) + --bp_o.trans:generate(global_conf.param_random) local f = nerv.ChunkFile(global_conf.param_fn .. '.0', 'w') f:write_chunk(ltp_ih) f:write_chunk(ltp_hh) - f:write_chunk(ltp_ho) + --f:write_chunk(ltp_ho) f:write_chunk(bp_h) - f:write_chunk(bp_o) + --f:write_chunk(bp_o) f:close() - + ]]-- return nil end printf("%s loading parameter from file %s...\n", global_conf.sche_log_pre, global_conf.param_fn .. '.' .. tostring(iter)) - local paramRepo = nerv.ParamRepo() paramRepo:import({global_conf.param_fn .. '.' .. tostring(iter)}, nil, global_conf) printf("%s preparing parameters end.\n", global_conf.sche_log_pre) - return paramRepo + return nil end --global_conf: table --Returns: nerv.LayerRepo -function prepare_layers(global_conf, paramRepo) +function prepare_layers(global_conf) printf("%s preparing layers...\n", global_conf.sche_log_pre) + local paramRepo = global_conf.paramRepo + local du = false --local recurrentLconfig = {{["bp"] = "bp_h", ["ltp_hh"] = "ltp_hh"}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["break_id"] = global_conf.vocab:get_sen_entry().id, ["independent"] = global_conf.independent, ["clip"] = 10}} - local recurrentLconfig = {{["bp"] = "bp_h", ["ltp_hh"] = "ltp_hh"}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["clip"] = 10, ["direct_update"] = du}} + local recurrentLconfig = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["clip"] = 10, ["direct_update"] = du}} local layers = { ["nerv.AffineRecurrentLayer"] = { @@ -75,7 +82,7 @@ function prepare_layers(global_conf, paramRepo) }, ["nerv.SelectLinearLayer"] = { - ["selectL1"] = {{["ltp"] = "ltp_ih"}, {["dim_in"] = {1}, ["dim_out"] = {global_conf.hidden_size}}}, + ["selectL1"] = {{}, {["dim_in"] = {1}, ["dim_out"] = {global_conf.hidden_size}, ["vocab"] = global_conf.vocab}}, }, ["nerv.SigmoidLayer"] = { @@ -87,7 +94,7 @@ function prepare_layers(global_conf, paramRepo) }, ["nerv.AffineLayer"] = { - ["outputL"] = {{["ltp"] = "ltp_ho", ["bp"] = "bp_o"}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.vocab:size()}, ["direct_update"] = du}}, + ["outputL"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.vocab:size()}, ["direct_update"] = du}}, }, ["nerv.SoftmaxCELayerT"] = { @@ -146,10 +153,10 @@ function prepare_tnn(global_conf, layerRepo) end function load_net(global_conf, next_iter) - local paramRepo = prepare_parameters(global_conf, next_iter) - local layerRepo = prepare_layers(global_conf, paramRepo) + prepare_parameters(global_conf, next_iter) + local layerRepo = prepare_layers(global_conf) local tnn = prepare_tnn(global_conf, layerRepo) - return tnn, paramRepo + return tnn end local train_fn, valid_fn, test_fn @@ -184,7 +191,7 @@ global_conf = { sche_log_pre = "[SCHEDULER]:", log_w_num = 40000, --give a message when log_w_num words have been processed timer = nerv.Timer(), - work_dir = '/home/slhome/txh18/workspace/nerv/play/dagL_test' + work_dir_base = '/home/slhome/txh18/workspace/nerv/play/ptbEXP/tnn_test' } elseif (set == "msr_sc") then @@ -215,7 +222,7 @@ global_conf = { sche_log_pre = "[SCHEDULER]:", log_w_num = 40000, --give a message when log_w_num words have been processed timer = nerv.Timer(), - work_dir = '/home/slhome/txh18/workspace/sentenceCompletion/EXP-Nerv/rnnlm_test' + work_dir_base = '/home/slhome/txh18/workspace/sentenceCompletion/EXP-Nerv/rnnlm_test' } else @@ -233,7 +240,7 @@ global_conf = { hidden_size = 20, chunk_size = 2, - batch_size = 3, + batch_size = 10, max_iter = 3, param_random = function() return (math.random() / 5 - 0.1) end, @@ -244,15 +251,11 @@ global_conf = { sche_log_pre = "[SCHEDULER]:", log_w_num = 10, --give a message when log_w_num words have been processed timer = nerv.Timer(), - work_dir = '/home/slhome/txh18/workspace/nerv/play/dagL_test' + work_dir_base = '/home/slhome/txh18/workspace/nerv/play/testEXP/tnn_test' } end -global_conf.train_fn_shuf = global_conf.work_dir .. '/train_fn_shuf' -global_conf.train_fn_shuf_bak = global_conf.train_fn_shuf .. '_bak' -global_conf.param_fn = global_conf.work_dir .. "/params" - lr_half = false --can not be local, to be set by loadstring start_iter = -1 ppl_last = 100000 @@ -264,6 +267,11 @@ else printf("%s not user setting, all default...\n", global_conf.sche_log_pre) end +global_conf.work_dir = global_conf.work_dir_base .. 'h' .. global_conf.hidden_size .. 'ch' .. global_conf.chunk_size .. 'ba' .. global_conf.batch_size .. 'slr' .. global_conf.lrate +global_conf.train_fn_shuf = global_conf.work_dir .. '/train_fn_shuf' +global_conf.train_fn_shuf_bak = global_conf.train_fn_shuf .. '_bak' +global_conf.param_fn = global_conf.work_dir .. "/params" + ----------------printing options--------------------------------- printf("%s printing global_conf...\n", global_conf.sche_log_pre) for id, value in pairs(global_conf) do @@ -291,12 +299,13 @@ global_conf.vocab:build_file(global_conf.vocab_fn, false) ppl_rec = {} if start_iter == -1 then - prepare_parameters(global_conf, -1) --randomly generate parameters + prepare_parameters(global_conf, -1) --write pre_generated params to param.0 file end if start_iter == -1 or start_iter == 0 then print("===INITIAL VALIDATION===") - local tnn, paramRepo = load_net(global_conf, 0) + local tnn = load_net(global_conf, 0) + global_conf.paramRepo:export(global_conf.param_fn .. '.0', nil) --some parameters are auto-generated, saved again to param.0 file local result = LMTrainer.lm_process_file(global_conf, global_conf.valid_fn, tnn, false) --false update! nerv.LMUtil.wait(1) ppl_rec[0] = {} @@ -315,7 +324,7 @@ local final_iter for iter = start_iter, global_conf.max_iter, 1 do final_iter = iter --for final testing global_conf.sche_log_pre = "[SCHEDULER ITER"..iter.." LR"..global_conf.lrate.."]:" - tnn, paramRepo = load_net(global_conf, iter - 1) + tnn = load_net(global_conf, iter - 1) printf("===ITERATION %d LR %f===\n", iter, global_conf.lrate) result = LMTrainer.lm_process_file(global_conf, global_conf.train_fn_shuf, tnn, true) --true update! ppl_rec[iter] = {} @@ -336,7 +345,7 @@ for iter = start_iter, global_conf.max_iter, 1 do end if ppl_rec[iter].valid < ppl_last then printf("%s PPL improves, saving net to file %s.%d...\n", global_conf.sche_log_pre, global_conf.param_fn, iter) - paramRepo:export(global_conf.param_fn .. '.' .. tostring(iter), nil) + global_conf.paramRepo:export(global_conf.param_fn .. '.' .. tostring(iter), nil) else printf("%s PPL did not improve, rejected, copying param file of last iter...\n", global_conf.sche_log_pre) os.execute('cp ' .. global_conf.param_fn..'.'..tostring(iter - 1) .. ' ' .. global_conf.param_fn..'.'..tostring(iter)) @@ -357,6 +366,6 @@ end printf("\n") printf("===FINAL TEST===\n") global_conf.sche_log_pre = "[SCHEDULER FINAL_TEST]:" -tnn, paramRepo = load_net(global_conf, final_iter) +tnn = load_net(global_conf, final_iter) LMTrainer.lm_process_file(global_conf, global_conf.test_fn, tnn, false) --false update! diff --git a/nerv/layer/affine.lua b/nerv/layer/affine.lua index 136ea4d..ed58d38 100644 --- a/nerv/layer/affine.lua +++ b/nerv/layer/affine.lua @@ -60,10 +60,10 @@ end function AffineLayer:__init(id, global_conf, layer_conf) self.id = id - self.ltp = layer_conf.ltp - self.bp = layer_conf.bp self.dim_in = layer_conf.dim_in self.dim_out = layer_conf.dim_out + self.ltp = self:find_param("ltp", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[1], self.dim_out[1]}) --layer_conf.ltp + self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]})--layer_conf.bp self.gconf = global_conf self:check_dim_len(1, 1) -- exactly one input and one output -- self.direct_update = layer_conf.direct_update or global_conf.direct_update diff --git a/nerv/layer/affine_recurrent.lua b/nerv/layer/affine_recurrent.lua index da189e0..d537f4a 100644 --- a/nerv/layer/affine_recurrent.lua +++ b/nerv/layer/affine_recurrent.lua @@ -10,8 +10,8 @@ function Recurrent:__init(id, global_conf, layer_conf) self.dim_out = layer_conf.dim_out self.gconf = global_conf - self.bp = layer_conf.bp - self.ltp_hh = layer_conf.ltp_hh --from hidden to hidden + self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]}) --layer_conf.bp + self.ltp_hh = self:find_param("ltp_hh", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden self:check_dim_len(2, 1) self.direct_update = layer_conf.direct_update diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua index 6861b0e..67ebe1e 100644 --- a/nerv/layer/init.lua +++ b/nerv/layer/init.lua @@ -70,6 +70,27 @@ function Layer:get_dim() return self.dim_in, self.dim_out end +function Layer:find_param(pid, l_conf, gconf, p_type, p_dim) + if l_conf[pid] ~= nil then + nerv.printf("Param [%s] of layer [%s] found in layer_conf.\n", pid, self.id) + return l_conf[pid] + end + local pid_g = self.id .. '_' .. pid --global identifier + local pr = gconf.paramRepo + local p + if pr:has_param(pid_g) == true then + nerv.printf("Param [%s] of layer [%s] found in paramRepo.\n", pid, self.id) + p = pr:get_param(pid_g) + return p + end + nerv.printf("Param [%s] of layer [%s] is not found in layer_conf or paramRepo, switch to auto-generate.\n", pid, self.id) + p = p_type(pid_g, gconf) + p.trans = gconf.cumat_type(unpack(p_dim)) + p.trans:generate(global_conf.param_random) + pr:add(pid_g, p) --add the parameter into the paramRepo + return p +end + nerv.include('affine.lua') nerv.include('sigmoid.lua') nerv.include('softmax_ce.lua') diff --git a/nerv/nn/param_repo.lua b/nerv/nn/param_repo.lua index ab971ba..6d52691 100644 --- a/nerv/nn/param_repo.lua +++ b/nerv/nn/param_repo.lua @@ -67,6 +67,14 @@ function ParamRepo:export(param_file, pids) cf:close() end +function ParamRepo:has_param(pid) + if self.params[pid] ~= nil then + return true + else + return false + end +end + function ParamRepo:get_param(pid) local p = self.params[pid] if p == nil then |