aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile3
-rw-r--r--examples/cumatrix_example.lua10
-rw-r--r--matrix/cukernel.h2
-rw-r--r--matrix/generic/cukernel.cu43
-rw-r--r--matrix/generic/cumatrix.c27
5 files changed, 79 insertions, 6 deletions
diff --git a/Makefile b/Makefile
index ba0ab35..727765d 100644
--- a/Makefile
+++ b/Makefile
@@ -41,8 +41,9 @@ $(OBJ_DIR)/luaT.o:
$(LIBS): $(OBJS)
gcc -shared -o $@ $(OBJS) $(LDFLAGS)
-$(OBJ_DIR)/matrix/cumatrix.o: matrix/generic/cumatrix.c matrix/generic/matrix.c
+$(OBJ_DIR)/matrix/cumatrix.o: matrix/generic/cumatrix.c matrix/generic/matrix.c matrix/generic/cukernel.cu
$(OBJ_DIR)/matrix/mmatrix.o: matrix/generic/mmatrix.c matrix/generic/matrix.c
+$(OBJ_DIR)/matrix/cukernel.o: matrix/generic/cukernel.cu
clean:
-rm -rf $(OBJ_DIR)
diff --git a/examples/cumatrix_example.lua b/examples/cumatrix_example.lua
index 084dcca..544fc7f 100644
--- a/examples/cumatrix_example.lua
+++ b/examples/cumatrix_example.lua
@@ -1,5 +1,5 @@
-m = 10
-n = 10
+m = 4
+n = 4
fm = nerv.CuMatrixFloat(m, n)
dm = nerv.CuMatrixDouble(m, n)
for i = 0, m - 1 do
@@ -23,3 +23,9 @@ print(fs + fs)
print(ds + ds)
print(fs - fs)
print(ds - ds)
+
+a = fs:create()
+a:mul_elem(fs, fs)
+print(a)
+a:log_elem(fs)
+print(a)
diff --git a/matrix/cukernel.h b/matrix/cukernel.h
index b2b6cb2..232699d 100644
--- a/matrix/cukernel.h
+++ b/matrix/cukernel.h
@@ -1,4 +1,6 @@
#ifdef NERV_GENERIC_CUKERNEL
+void cudak_(cuda_mul_elem)(const Matrix *a, const Matrix *b, Matrix *c);
+void cudak_(cuda_log_elem)(const Matrix *a, Matrix *b);
void cudak_(cuda_sigmoid)(const Matrix *a, Matrix *b);
void cudak_(cuda_sigmoid_grad)(const Matrix *output, const Matrix *err, Matrix *nerr);
void cudak_(cuda_rowsum)(const Matrix *a, Matrix *b);
diff --git a/matrix/generic/cukernel.cu b/matrix/generic/cukernel.cu
index 517393e..0e3d3cf 100644
--- a/matrix/generic/cukernel.cu
+++ b/matrix/generic/cukernel.cu
@@ -6,6 +6,27 @@
#define CUDA_THREADS_N 16
#define CUDA_THREADS_NN (16 * 16)
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
+__global__ void cudak_(log_elem)(const MATRIX_ELEM *a, MATRIX_ELEM *b,
+ int nrow, int ncol, int stride) {
+ int j = blockIdx.x * blockDim.x + threadIdx.x;
+ int i = blockIdx.y * blockDim.y + threadIdx.y;
+ long idx;
+ if (i >= nrow || j >= ncol) return;
+ idx = j + i * stride;
+ b[idx] = log(a[idx]);
+}
+
+__global__ void cudak_(mul_elem)(const MATRIX_ELEM *a, const MATRIX_ELEM *b,
+ MATRIX_ELEM *c,
+ int nrow, int ncol, int stride) {
+ int j = blockIdx.x * blockDim.x + threadIdx.x;
+ int i = blockIdx.y * blockDim.y + threadIdx.y;
+ long idx;
+ if (i >= nrow || j >= ncol) return;
+ idx = j + i * stride;
+ c[idx] = a[idx] * b[idx];
+}
+
__global__ void cudak_(sigmoid)(const MATRIX_ELEM *a, MATRIX_ELEM *b,
int nrow, int ncol, int stride) {
int j = blockIdx.x * blockDim.x + threadIdx.x;
@@ -136,6 +157,28 @@ __global__ void cudak_(fill)(MATRIX_ELEM *a,
extern "C" {
#include "../cukernel.h"
+ void cudak_(cuda_log_elem)(const Matrix *a, Matrix *b) {
+ dim3 threadsPerBlock(CUDA_THREADS_N,
+ CUDA_THREADS_N);
+ dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x),
+ CEIL_DIV(b->nrow, threadsPerBlock.y));
+ cudak_(log_elem)<<<numBlocks, threadsPerBlock>>> \
+ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b),
+ b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM));
+ }
+
+ void cudak_(cuda_mul_elem)(const Matrix *a, const Matrix *b,
+ Matrix *c) {
+ dim3 threadsPerBlock(CUDA_THREADS_N,
+ CUDA_THREADS_N);
+ dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x),
+ CEIL_DIV(b->nrow, threadsPerBlock.y));
+ cudak_(mul_elem)<<<numBlocks, threadsPerBlock>>> \
+ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b),
+ MATRIX_ELEM_PTR(c),
+ b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM));
+ }
+
void cudak_(cuda_sigmoid)(const Matrix *a, Matrix *b) {
dim3 threadsPerBlock(CUDA_THREADS_N,
CUDA_THREADS_N);
diff --git a/matrix/generic/cumatrix.c b/matrix/generic/cumatrix.c
index 2deb7a3..ed64bbf 100644
--- a/matrix/generic/cumatrix.c
+++ b/matrix/generic/cumatrix.c
@@ -48,6 +48,7 @@ static int nerv_matrix_(add)(lua_State *L) {
MATRIX_ELEM alpha = luaL_checknumber(L, 4); /* alpha */
MATRIX_ELEM beta = luaL_checknumber(L, 5); /* alpha */
CHECK_SAME_DIMENSION(a, b);
+ CHECK_SAME_DIMENSION(a, c);
nerv_matrix_(add_)(a, b, c, alpha, beta);
return 0;
}
@@ -118,6 +119,7 @@ static int nerv_matrix_(softmax)(lua_State *L) {
Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *max = nerv_matrix_(new_)(a->nrow, 1);
Matrix *dno = nerv_matrix_(new_)(a->nrow, 1);
+ CHECK_SAME_DIMENSION(a, b);
cudak_(cuda_rowmax)(a, max);
cudak_(cuda_softmax_denominator)(a, max, dno);
cudak_(cuda_softmax_final)(a, max, dno, b);
@@ -230,25 +232,44 @@ static int nerv_matrix_(trans)(lua_State *L) {
return 1;
}
+static int nerv_matrix_(mul_elem)(lua_State *L) {
+ Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
+ Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
+ Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
+ CHECK_SAME_DIMENSION(a, b);
+ CHECK_SAME_DIMENSION(a, c);
+ cudak_(cuda_mul_elem)(a, b, c);
+ return 0;
+}
+
+static int nerv_matrix_(log_elem)(lua_State *L) {
+ Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
+ Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
+ CHECK_SAME_DIMENSION(a, b);
+ cudak_(cuda_log_elem)(a, b);
+ return 0;
+}
static const luaL_Reg nerv_matrix_(extra_methods)[] = {
{"create", nerv_matrix_(create)},
- {"softmax", nerv_matrix_(softmax)},
{"colsum", nerv_matrix_(colsum)},
{"rowsum", nerv_matrix_(rowsum)},
{"rowmax", nerv_matrix_(rowmax)},
+ {"trans", nerv_matrix_(trans)},
+ /* in-place calc */
{"copy_fromh", nerv_matrix_(copy_fromh)},
{"copy_fromd", nerv_matrix_(copy_fromd)},
{"copy_toh", nerv_matrix_(copy_toh)},
{"copy_tod", nerv_matrix_(copy_tod)},
- {"trans", nerv_matrix_(trans)},
- /* in-place calc */
{"add", nerv_matrix_(add)},
{"mul", nerv_matrix_(mul)},
{"add_row", nerv_matrix_(add_row)},
{"fill", nerv_matrix_(fill)},
{"sigmoid", nerv_matrix_(sigmoid)},
{"sigmoid_grad", nerv_matrix_(sigmoid_grad)},
+ {"softmax", nerv_matrix_(softmax)},
+ {"mul_elem", nerv_matrix_(mul_elem)},
+ {"log_elem", nerv_matrix_(log_elem)},
{NULL, NULL}
};