aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--nerv/examples/lmptb/lmptb/layer/select_linear.lua13
-rw-r--r--nerv/examples/lmptb/main.lua3
-rw-r--r--nerv/lib/matrix/cukernel.h1
-rw-r--r--nerv/lib/matrix/generic/cukernel.cu20
-rw-r--r--nerv/lib/matrix/generic/cumatrix.c12
-rw-r--r--nerv/lib/matrix/generic/cumatrix.h1
-rw-r--r--nerv/matrix/generic/cumatrix.c14
-rw-r--r--nerv/nn/layer_dag.lua2
8 files changed, 60 insertions, 6 deletions
diff --git a/nerv/examples/lmptb/lmptb/layer/select_linear.lua b/nerv/examples/lmptb/lmptb/layer/select_linear.lua
index e4afac4..d4cff0b 100644
--- a/nerv/examples/lmptb/lmptb/layer/select_linear.lua
+++ b/nerv/examples/lmptb/lmptb/layer/select_linear.lua
@@ -30,12 +30,13 @@ function SL:init(batch_size)
end
function SL:update(bp_err, input, output)
- for i = 1, input[1]:ncol(), 1 do
- if (input[1][0][i - 1] ~= 0) then
- local word_vec = self.ltp.trans[input[1][0][i - 1]]
- word_vec:add(word_vec, bp_err[1][i - 1], 1, - self.gconf.lrate / self.gconf.batch_size)
- end
- end
+ --for i = 1, input[1]:ncol(), 1 do
+ -- if (input[1][0][i - 1] ~= 0) then
+ -- local word_vec = self.ltp.trans[input[1][0][i - 1]]
+ --word_vec:add(word_vec, bp_err[1][i - 1], 1, - self.gconf.lrate / self.gconf.batch_size)
+ -- end
+ --end
+ self.ltp.trans:update_select_rows(bp_err[1], input[1], - self.gconf.lrate / self.gconf.batch_size, 0)
end
function SL:propagate(input, output)
diff --git a/nerv/examples/lmptb/main.lua b/nerv/examples/lmptb/main.lua
index 13d610e..d505456 100644
--- a/nerv/examples/lmptb/main.lua
+++ b/nerv/examples/lmptb/main.lua
@@ -17,6 +17,7 @@ function prepare_parameters(global_conf, first_time)
ltp_ih = nerv.LinearTransParam("ltp_ih", global_conf)
ltp_ih.trans = global_conf.cumat_type(global_conf.vocab:size() + 1, global_conf.hidden_size) --index 0 is for zero, others correspond to vocab index(starting from 1)
ltp_ih.trans:generate(global_conf.param_random)
+ ltp_ih.trans[0]:fill(0)
ltp_hh = nerv.LinearTransParam("ltp_hh", global_conf)
ltp_hh.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.hidden_size)
@@ -153,6 +154,7 @@ function propagateFile(global_conf, dagL, fn, config)
local token_store = {}
local hidden_store = {}
local sigmoidL_ref = dagL.layers["sigmoidL1"]
+ local inputL_ref = dagL.layers["selectL1"]
token_store[tnow] = feeder:get_batch()
for i = 1, global_conf.bptt + 1 do
@@ -209,6 +211,7 @@ function propagateFile(global_conf, dagL, fn, config)
global_conf.timer:tic("dagL-update")
dagL:update(dagL_err, dagL_input, dagL_output)
global_conf.timer:toc("dagL-update")
+ inputL_ref.layer.ltp.trans[0]:fill(0) --afraid that this will be updated in select_linear:update
end
for i = 1, global_conf.batch_size, 1 do
diff --git a/nerv/lib/matrix/cukernel.h b/nerv/lib/matrix/cukernel.h
index 2126c6f..fffe0bc 100644
--- a/nerv/lib/matrix/cukernel.h
+++ b/nerv/lib/matrix/cukernel.h
@@ -13,6 +13,7 @@ void cudak_(cuda_softmax_final)(const Matrix *a, const Matrix *max, const Matrix
void cudak_(cuda_add_row)(const Matrix *a, Matrix *b, double beta);
void cudak_(cuda_fill)(Matrix *a, double val);
void cudak_(cuda_clip)(Matrix *a, double val_1, double val_2);
+void cudak_(cuda_update_select_rows)(Matrix *c, const Matrix *a, const Matrix *idx, double alpha, double beta);
void cudak_(cuda_expand_frm)(const Matrix *a, Matrix *b, int context);
void cudak_(cuda_rearrange_frm)(const Matrix *a, Matrix *b, int step);
void cudak_(cuda_scale_rows_by_row)(const Matrix *a, Matrix *b);
diff --git a/nerv/lib/matrix/generic/cukernel.cu b/nerv/lib/matrix/generic/cukernel.cu
index 08feb59..6c8e64a 100644
--- a/nerv/lib/matrix/generic/cukernel.cu
+++ b/nerv/lib/matrix/generic/cukernel.cu
@@ -225,6 +225,15 @@ __global__ void cudak_(clip)(MATRIX_ELEM *a,
a[j + i * stride] = val_1;
}
+__global__ void cudak_(update_select_rows)(MATRIX_ELEM *c, const MATRIX_ELEM *a, const MATRIX_ELEM *idx,
+ int nrow_a, int ncol_a, int stride_c, int stride_a, double alpha, double beta) {
+ int j = blockIdx.x * blockDim.x + threadIdx.x;
+ int i = blockIdx.y * blockDim.y + threadIdx.y;
+ if (i >= nrow_a || j >= ncol_a) return;
+ int i_c = lrintf(idx[i]);
+ c[j + i_c * stride_c] = c[j + i_c * stride_c] * (1 - beta * alpha) + a[j + i * stride_a] * alpha;
+}
+
__global__ void cudak_(expand_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b,
int nrow, int ncol,
int enrow, int encol,
@@ -540,6 +549,17 @@ extern "C" {
a->stride / sizeof(MATRIX_ELEM), val_1, val_2);
cudaStreamSynchronize(0);
}
+
+ void cudak_(cuda_update_select_rows)(Matrix *c, const Matrix *a, const Matrix *idx, double alpha, double beta) {
+ dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N);
+ dim3 numBlocks(CEIL_DIV(a->ncol, threadsPerBlock.x),
+ CEIL_DIV(a->nrow, threadsPerBlock.y));
+ cudak_(update_select_rows)<<<numBlocks, threadsPerBlock>>> \
+ (MATRIX_ELEM_PTR(c), MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(idx),
+ a->nrow, a->ncol, c->stride / sizeof(MATRIX_ELEM),
+ a->stride / sizeof(MATRIX_ELEM), alpha, beta);
+ cudaStreamSynchronize(0);
+ }
void cudak_(cuda_expand_frm)(const Matrix *a, Matrix *b, int context) {
dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N);
diff --git a/nerv/lib/matrix/generic/cumatrix.c b/nerv/lib/matrix/generic/cumatrix.c
index 770e503..2dc5899 100644
--- a/nerv/lib/matrix/generic/cumatrix.c
+++ b/nerv/lib/matrix/generic/cumatrix.c
@@ -359,6 +359,18 @@ void nerv_matrix_(copy_rows_fromd_by_idx)(Matrix *a, const Matrix *b,
NERV_SET_STATUS(status, NERV_NORMAL, 0);
}
+void nerv_matrix_(update_select_rows)(Matrix *c, const Matrix *a, const Matrix *idx, double alpha, double beta, Status *status) {
+ long nrow = a->nrow;
+ if (idx->nrow != 1)
+ NERV_EXIT_STATUS(status, MAT_IDX_VECTOR_EXP, 0);
+ if (a->ncol != c->ncol)
+ NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0);
+ PROFILE_START
+ cudak_(cuda_update_select_rows)(c, a, idx, alpha, beta);
+ PROFILE_STOP
+ NERV_SET_STATUS(status, NERV_NORMAL, 0);
+}
+
void nerv_matrix_(expand_frm)(Matrix *a, const Matrix *b,
int context, Status *status) {
if (a->nrow != b->nrow)
diff --git a/nerv/lib/matrix/generic/cumatrix.h b/nerv/lib/matrix/generic/cumatrix.h
index 04e8c5a..21c29b7 100644
--- a/nerv/lib/matrix/generic/cumatrix.h
+++ b/nerv/lib/matrix/generic/cumatrix.h
@@ -42,6 +42,7 @@ void nerv_matrix_(copy_rows_fromh_by_idx)(Matrix *a, const Matrix *b,
const Matrix *idx, int b_begin, Status *status);
void nerv_matrix_(copy_rows_fromd_by_idx)(Matrix *a, const Matrix *b,
const Matrix *idx, int b_begin, Status *status);
+void nerv_matrix_(update_select_rows)(Matrix *c, const Matrix *a, const Matrix *idx, double alpha, double beta, Status *status);
void nerv_matrix_(expand_frm)(Matrix *a, const Matrix *b,
int context, Status *status);
diff --git a/nerv/matrix/generic/cumatrix.c b/nerv/matrix/generic/cumatrix.c
index 08cb4c2..623352e 100644
--- a/nerv/matrix/generic/cumatrix.c
+++ b/nerv/matrix/generic/cumatrix.c
@@ -291,6 +291,19 @@ static int nerv_matrix_(lua_scale_rows_by_row)(lua_State *L) {
return 0;
}
+static int nerv_matrix_(lua_update_select_rows)(lua_State *L) {
+ //Update c's select rows, i.e. c[idx[i]] = c[idx[i]] * (1 - beta * alpha) + a[i] * alpha
+ Status status;
+ Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
+ const Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
+ const Matrix *idx = luaT_checkudata(L, 3, nerv_matrix_(tname));
+ MATRIX_ELEM alpha = luaL_checknumber(L, 4);
+ MATRIX_ELEM beta = luaL_checknumber(L, 5);
+ nerv_matrix_(update_select_rows)(c, a, idx, alpha, beta, &status);
+ NERV_LUA_CHECK_STATUS(L, status);
+ return 0;
+}
+
static const luaL_Reg nerv_matrix_(extra_methods)[] = {
{"colsum", nerv_matrix_(lua_colsum)},
{"colsame", nerv_matrix_(lua_colsame)},
@@ -310,6 +323,7 @@ static const luaL_Reg nerv_matrix_(extra_methods)[] = {
{"add_row", nerv_matrix_(lua_add_row)},
{"clip", nerv_matrix_(lua_clip)},
{"fill", nerv_matrix_(lua_fill)},
+ {"update_select_rows", nerv_matrix_(lua_update_select_rows)},
{"sigmoid", nerv_matrix_(lua_sigmoid)},
{"sigmoid_grad", nerv_matrix_(lua_sigmoid_grad)},
{"softmax", nerv_matrix_(lua_softmax)},
diff --git a/nerv/nn/layer_dag.lua b/nerv/nn/layer_dag.lua
index 91818d6..4904f4f 100644
--- a/nerv/nn/layer_dag.lua
+++ b/nerv/nn/layer_dag.lua
@@ -251,7 +251,9 @@ function DAGLayer:update(bp_err, input, output)
-- print("update")
for id, ref in pairs(self.queue) do
-- print(ref.layer.id)
+ self.gconf.timer:tic("(update)"..ref.layer.id);
ref.layer:update(ref.err_inputs, ref.inputs, ref.outputs)
+ self.gconf.timer:toc("(update)"..ref.layer.id);
end
end