aboutsummaryrefslogtreecommitdiff
path: root/nerv
diff options
context:
space:
mode:
authorQi Liu <[email protected]>2016-03-14 20:07:15 +0800
committerQi Liu <[email protected]>2016-03-14 20:07:15 +0800
commitb08da1fef90e93b188704056cdae651d7865f98d (patch)
tree4ea507d591621920e476c246c393049c8c22616b /nerv
parent35496b6a648d98dc41d6226c1d43650aba58cdfc (diff)
speedup border flush
Diffstat (limited to 'nerv')
-rw-r--r--nerv/examples/network_debug/config.lua2
-rw-r--r--nerv/examples/network_debug/main.lua2
-rw-r--r--nerv/examples/network_debug/reader.lua4
-rw-r--r--nerv/nn/network.lua215
4 files changed, 138 insertions, 85 deletions
diff --git a/nerv/examples/network_debug/config.lua b/nerv/examples/network_debug/config.lua
index 9025b78..093bde2 100644
--- a/nerv/examples/network_debug/config.lua
+++ b/nerv/examples/network_debug/config.lua
@@ -12,7 +12,7 @@ function get_global_conf()
layer_num = 1,
chunk_size = 15,
batch_size = 20,
- max_iter = 3,
+ max_iter = 1,
param_random = function() return (math.random() / 5 - 0.1) end,
dropout_rate = 0.5,
timer = nerv.Timer(),
diff --git a/nerv/examples/network_debug/main.lua b/nerv/examples/network_debug/main.lua
index 1bee43c..bbcdb6c 100644
--- a/nerv/examples/network_debug/main.lua
+++ b/nerv/examples/network_debug/main.lua
@@ -20,12 +20,12 @@ for i = 1, global_conf.max_iter do
local train_reader = nerv.Reader(data_path .. 'vocab', data_path .. 'ptb.train.txt.adds')
local val_reader = nerv.Reader(data_path .. 'vocab', data_path .. 'ptb.valid.txt.adds')
local train_ppl, val_ppl = NN:epoch(train_reader, val_reader)
+ nerv.printf('Epoch %d: %f %f %f\n', i, global_conf.lrate, train_ppl, val_ppl)
if val_ppl < best_cv then
best_cv = val_ppl
else
global_conf.lrate = global_conf.lrate / 2.0
end
- nerv.printf('Epoch %d: %f %f %f\n', i, global_conf.lrate, train_ppl, val_ppl)
timer:toc('Epoch' .. i)
timer:check('Epoch' .. i)
io.flush()
diff --git a/nerv/examples/network_debug/reader.lua b/nerv/examples/network_debug/reader.lua
index 70c0c97..76a78cf 100644
--- a/nerv/examples/network_debug/reader.lua
+++ b/nerv/examples/network_debug/reader.lua
@@ -32,8 +32,8 @@ end
function Reader:get_seq(input_file)
local f = io.open(input_file, 'r')
self.seq = {}
- -- while true do
- for i = 1, 26 do
+ while true do
+ -- for i = 1, 26 do
local seq = f:read()
if seq == nil then
break
diff --git a/nerv/nn/network.lua b/nerv/nn/network.lua
index 2cb83ce..910cdad 100644
--- a/nerv/nn/network.lua
+++ b/nerv/nn/network.lua
@@ -16,6 +16,7 @@ function network:__init(id, global_conf, network_conf)
if self.nn_act_default == nil then
self.nn_act_default = 0
end
+
self.layers = {}
self.input_conn = {}
self.output_conn = {}
@@ -36,16 +37,41 @@ function network:__init(id, global_conf, network_conf)
end
self.output_conn[id][port] = {0, i, time}
end
+
self.delay = 0
for i = 1, #self.layers do
local dim_in, _ = self.layers[i]:get_dim()
for j = 1, #dim_in do
+ if self.input_conn[i][j] == nil then
+ nerv.error('dangling input')
+ end
local time = self.input_conn[i][j][3]
if math.abs(time) > self.delay then
self.delay = math.abs(time)
end
end
end
+
+ self.input_edge = {}
+ self.output_edge = {}
+ for t = -self.delay, self.delay do
+ self.input_edge[t] = {}
+ self.output_edge[t] = {}
+ end
+ for i = 1, #self.layers do
+ local dim_in, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_in do
+ local time = self.input_conn[i][j][3]
+ table.insert(self.input_edge[time], {i, j})
+ end
+ for j = 1, #dim_out do
+ if self.output_conn[i][j] == nil then
+ nerv.error('dangling output')
+ end
+ local time = self.output_conn[i][j][3]
+ table.insert(self.output_edge[time], {i, j})
+ end
+ end
end
function network:compile(layer)
@@ -112,11 +138,20 @@ function network:init(batch_size, chunk_size)
self:make_initial_store()
collectgarbage('collect')
+
+ self.flush = {}
+ for t = 1, self.chunk_size do
+ self.flush[t] = {}
+ end
end
function network:epoch_init()
+ self.timestamp = 0
for i = 1, #self.layers do
self.layers[i]:init(self.batch_size, self.chunk_size)
+ for t = 1, self.chunk_size do
+ self.flush[t][i] = {timestamp = 0, input = {}, output = {}}
+ end
end
end
@@ -134,12 +169,10 @@ function network:topsort()
for i = 1, #self.layers do
local _, dim_out = self.layers[i]:get_dim()
for j = 1, #dim_out do
- if self.output_conn[i][j] ~= nil then
- local edge = self.output_conn[i][j]
- local id, time = edge[1], edge[3] + t
- if time >= 1 and time <= self.chunk_size and id ~= 0 then
- degree[time][id] = degree[time][id] + 1
- end
+ local edge = self.output_conn[i][j]
+ local id, time = edge[1], edge[3] + t
+ if time >= 1 and time <= self.chunk_size and id ~= 0 then
+ degree[time][id] = degree[time][id] + 1
end
end
end
@@ -161,15 +194,13 @@ function network:topsort()
l = l + 1
local _, dim_out = self.layers[i]:get_dim()
for j = 1, #dim_out do
- if self.output_conn[i][j] ~= nil then
- local edge = self.output_conn[i][j]
- local id, time = edge[1], edge[3] + t
- if time >= 1 and time <= self.chunk_size and id ~= 0 then
- degree[time][id] = degree[time][id] - 1
- if degree[time][id] == 0 then
- r = r + 1
- self.queue[r] = {chunk = time, id = id}
- end
+ local edge = self.output_conn[i][j]
+ local id, time = edge[1], edge[3] + t
+ if time >= 1 and time <= self.chunk_size and id ~= 0 then
+ degree[time][id] = degree[time][id] - 1
+ if degree[time][id] == 0 then
+ r = r + 1
+ self.queue[r] = {chunk = time, id = id}
end
end
end
@@ -202,17 +233,19 @@ function network:make_initial_store()
memory[t][i][j]:fill(self.nn_act_default)
end
end
- -- memory[t][0] stores network input
- memory[t][0] = {}
- for j = 1, #self.dim_in do
- memory[t][0][j] = self.mat_type(self.batch_size, self.dim_in[j])
- memory[t][0][j]:fill(self.nn_act_default)
- end
- -- err_memory[t][0] stores network err_input
- err_memory[t][0] = {}
- for j = 1, #self.dim_out do
- err_memory[t][0][j] = self.mat_type(self.batch_size, self.dim_out[j])
- err_memory[t][0][j]:fill(0)
+ if t < 1 or t > self.chunk_size then
+ -- memory[t][0] stores network input
+ memory[t][0] = {}
+ for j = 1, #self.dim_in do
+ memory[t][0][j] = self.mat_type(self.batch_size, self.dim_in[j])
+ memory[t][0][j]:fill(self.nn_act_default)
+ end
+ -- err_memory[t][0] stores network err_input
+ err_memory[t][0] = {}
+ for j = 1, #self.dim_out do
+ err_memory[t][0][j] = self.mat_type(self.batch_size, self.dim_out[j])
+ err_memory[t][0][j]:fill(0)
+ end
end
end
@@ -314,9 +347,14 @@ function network:make_initial_store()
self.legacy[t] = {}
for i = 1, #self.layers do
self.legacy[t][i] = {}
- local _, dim_out = self.layers[i]:get_dim()
- for j = 1, #dim_out do
- self.legacy[t][i][j] = memory[t][i][j]
+ end
+ end
+ for d = 1, self.delay do
+ for t = 1 - d, 0 do
+ for i = 1, #self.output_edge[d] do
+ local edge = self.output_edge[d][i]
+ local id, port = edge[1], edge[2]
+ self.legacy[t][id][port] = memory[t][id][port]
end
end
end
@@ -383,59 +421,74 @@ function network:mini_batch_init(info)
self.info = info
self:set_input(self.info.input)
self:set_output(self.info.output)
+ if self.info.do_train then
+ self:set_err_input(self.info.err_input)
+ self:set_err_output(self.info.err_output)
+ end
-- calculate border
self.max_length = 0
- self.border = {}
- for i = 1, self.chunk_size do
- self.border[i] = {}
- end
+ self.timestamp = self.timestamp + 1
for i = 1, self.batch_size do
if self.info.seq_length[i] > self.max_length then
self.max_length = self.info.seq_length[i]
end
- for t = 1, self.delay do
- local chunk = self.info.seq_length[i] + t
- if chunk > self.chunk_size then
- break
+ local border = self.info.seq_length[i]
+ for d = 1, self.delay do
+ for t = border + 1, border + d do
+ if t > self.chunk_size then
+ break
+ end
+ for j = 1, #self.output_edge[-d] do
+ local edge = self.output_edge[-d][j]
+ local id, port = edge[1], edge[2]
+ local flush = self.flush[t][id]
+ if flush.timestamp ~= self.timestamp then
+ flush.timestamp = self.timestamp
+ flush.input = {}
+ flush.output = {}
+ end
+ table.insert(flush.output, {port, i})
+ end
+ end
+ if self.info.do_train then
+ for t = border, border - d + 1, -1 do
+ if t < 1 then
+ break
+ end
+ for j = 1, #self.input_edge[-d] do
+ local edge = self.input_edge[-d][j]
+ local id, port = edge[1], edge[2]
+ local flush = self.flush[t][id]
+ if flush.timestamp ~= self.timestamp then
+ flush.timestamp = self.timestamp
+ flush.input = {}
+ flush.output = {}
+ end
+ table.insert(flush.input, {port, i})
+ end
+ end
end
- table.insert(self.border[chunk], i)
end
end
-- copy legacy
- for t = 1 - self.delay, 0 do
- for i = 1, #self.layers do
- local _, dim_out = self.layers[i]:get_dim()
- for j = 1, #dim_out do
- if t + self.chunk_size >= 1 and self.output_conn[i][j][1] ~= 0 then
- self.legacy[t][i][j]:copy_from(self.output[t + self.chunk_size][i][j])
+ for d = 1, self.delay do
+ for t = 1 - d, 0 do
+ for i = 1, #self.output_edge[d] do
+ local edge = self.output_edge[d][i]
+ local id, port = edge[1], edge[2]
+ if t + self.chunk_size >= 1 and self.output_conn[id][port][1] ~= 0 then
+ self.legacy[t][id][port]:copy_from(self.output[t + self.chunk_size][id][port])
end
- for k = 1, #self.info.new_seq do
- local batch = self.info.new_seq[k]
- self.legacy[t][i][j][batch - 1]:fill(self.nn_act_default)
+ for j = 1, #self.info.new_seq do
+ local batch = self.info.new_seq[j]
+ self.legacy[t][id][port][batch - 1]:fill(self.nn_act_default)
end
end
end
end
- if self.info.do_train then
- self:set_err_input(self.info.err_input)
- self:set_err_output(self.info.err_output)
-
- -- flush border gradient
- for t = self.max_length + 1, self.max_length + self.delay do
- if t > self.chunk_size then
- break
- end
- for i = 1, #self.layers do
- local dim_in, _ = self.layers[i]:get_dim()
- for j = 1, #dim_in do
- self.err_output[t][i][j]:fill(0)
- end
- end
- end
- end
end
function network:propagate()
@@ -445,11 +498,11 @@ function network:propagate()
self.layers[id]:propagate(self.input[t][id], self.output[t][id], t)
end
-- flush border activation
- for j = 1, #self.border[t] do
- local batch = self.border[t][j]
- local _, dim_out = self.layers[id]:get_dim()
- for k = 1, #dim_out do
- self.output[t][id][k][batch - 1]:fill(self.nn_act_default)
+ if self.flush[t][id].timestamp == self.timestamp then
+ for j = 1, #self.flush[t][id].output do
+ local border = self.flush[t][id].output[j]
+ local port, batch = border[1], border[2]
+ self.output[t][id][port][batch - 1]:fill(self.nn_act_default)
end
end
end
@@ -459,15 +512,8 @@ function network:back_propagate()
for i = #self.queue, 1, -1 do
local t, id = self.queue[i].chunk, self.queue[i].id
if t <= self.max_length then
- -- flush border gradient
- for j = 1, #self.border[t] do
- local batch = self.border[t][j]
- local _, dim_out = self.layers[id]:get_dim()
- for k = 1, #dim_out do
- self.err_input[t][id][k][batch - 1]:fill(0)
- end
- end
self.layers[id]:back_propagate(self.err_input[t][id], self.err_output[t][id], self.input[t][id], self.output[t][id], t)
+ -- gradient clip
if self.clip ~= nil then
local dim_in, _ = self.layers[id]:get_dim()
for j = 1, #dim_in do
@@ -475,14 +521,21 @@ function network:back_propagate()
end
end
end
+ -- flush border gradient
+ if self.flush[t][id].timestamp == self.timestamp then
+ for j = 1, #self.flush[t][id].input do
+ local border = self.flush[t][id].input[j]
+ local port, batch = border[1], border[2]
+ self.err_output[t][id][port][batch - 1]:fill(0)
+ end
+ end
end
end
function network:update()
- for i = 1, #self.queue do
- local t, id = self.queue[i].chunk, self.queue[i].id
- if t <= self.max_length then
- self.layers[id]:update(self.err_input[t][id], self.input[t][id], self.output[t][id], t)
+ for t = 1, self.max_length do
+ for i = 1, #self.layers do
+ self.layers[i]:update(self.err_input[t][i], self.input[t][i], self.output[t][i], t)
end
end
end