diff options
author | txh18 <[email protected]> | 2016-01-13 14:32:14 +0800 |
---|---|---|
committer | txh18 <[email protected]> | 2016-01-13 14:32:14 +0800 |
commit | 398e76ed28d7bbdf8cdf39a6d8f0fb7d8656febe (patch) | |
tree | 9e6c78ee16d127a51e4710e232526b042a98d7dd /nerv | |
parent | cb6309172b3bb7c03f0e36abb0479344d50cbb0a (diff) |
added bigrulm_ptb_main.lua
Diffstat (limited to 'nerv')
-rw-r--r-- | nerv/examples/lmptb/.gitignore | 1 | ||||
-rw-r--r-- | nerv/examples/lmptb/bigrulm_ptb_main.lua | 519 |
2 files changed, 520 insertions, 0 deletions
diff --git a/nerv/examples/lmptb/.gitignore b/nerv/examples/lmptb/.gitignore new file mode 100644 index 0000000..55c0728 --- /dev/null +++ b/nerv/examples/lmptb/.gitignore @@ -0,0 +1 @@ +tmp_exp.sh diff --git a/nerv/examples/lmptb/bigrulm_ptb_main.lua b/nerv/examples/lmptb/bigrulm_ptb_main.lua new file mode 100644 index 0000000..3a7597f --- /dev/null +++ b/nerv/examples/lmptb/bigrulm_ptb_main.lua @@ -0,0 +1,519 @@ +require 'lmptb.lmvocab' +require 'lmptb.lmfeeder' +require 'lmptb.lmutil' +require 'lmptb.layer.init' +--require 'tnn.init' +require 'lmptb.lmseqreader' +require 'lm_trainer' + +--[[global function rename]]-- +--local printf = nerv.printf +local LMTrainer = nerv.LMTrainer +--[[global function rename ends]]-- + +--global_conf: table +--first_time: bool +--Returns: a ParamRepo +function prepare_parameters(global_conf, iter) + nerv.printf("%s preparing parameters...\n", global_conf.sche_log_pre) + + global_conf.paramRepo = nerv.ParamRepo() + local paramRepo = global_conf.paramRepo + + if iter == -1 then --first time + nerv.printf("%s first time, prepare some pre-set parameters, and leaving other parameters to auto-generation...\n", global_conf.sche_log_pre) + local f = nerv.ChunkFile(global_conf.param_fn .. '.0', 'w') + f:close() + --[[ + ltp_ih = nerv.LinearTransParam("ltp_ih", global_conf) + ltp_ih.trans = global_conf.cumat_type(global_conf.vocab:size(), global_conf.hidden_size) --index 0 is for zero, others correspond to vocab index(starting from 1) + ltp_ih.trans:generate(global_conf.param_random) + + ltp_hh = nerv.LinearTransParam("ltp_hh", global_conf) + ltp_hh.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.hidden_size) + ltp_hh.trans:generate(global_conf.param_random) + + --ltp_ho = nerv.LinearTransParam("ltp_ho", global_conf) + --ltp_ho.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.vocab:size()) + --ltp_ho.trans:generate(global_conf.param_random) + + bp_h = nerv.BiasParam("bp_h", global_conf) + bp_h.trans = global_conf.cumat_type(1, global_conf.hidden_size) + bp_h.trans:generate(global_conf.param_random) + + --bp_o = nerv.BiasParam("bp_o", global_conf) + --bp_o.trans = global_conf.cumat_type(1, global_conf.vocab:size()) + --bp_o.trans:generate(global_conf.param_random) + + local f = nerv.ChunkFile(global_conf.param_fn .. '.0', 'w') + f:write_chunk(ltp_ih) + f:write_chunk(ltp_hh) + --f:write_chunk(ltp_ho) + f:write_chunk(bp_h) + --f:write_chunk(bp_o) + f:close() + ]]-- + return nil + end + + nerv.printf("%s loading parameter from file %s...\n", global_conf.sche_log_pre, global_conf.param_fn .. '.' .. tostring(iter)) + paramRepo:import({global_conf.param_fn .. '.' .. tostring(iter)}, nil, global_conf) + + nerv.printf("%s preparing parameters end.\n", global_conf.sche_log_pre) + + return nil +end + +--global_conf: table +--Returns: nerv.LayerRepo +function prepare_layers(global_conf) + nerv.printf("%s preparing layers...\n", global_conf.sche_log_pre) + + local pr = global_conf.paramRepo + + local du = false + + local layers = { + ["nerv.GRULayerT"] = { + ["gruFL1"] = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["pr"] = pr}}, + ["gruRL1"] = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["pr"] = pr}}, + }, + + ["nerv.DropoutLayerT"] = { + ["dropoutL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}}}, + }, + + ["nerv.SelectLinearLayer"] = { + ["selectL1"] = {{}, {["dim_in"] = {1}, ["dim_out"] = {global_conf.hidden_size}, ["vocab"] = global_conf.vocab, ["pr"] = pr}}, + }, + + ["nerv.CombinerLayer"] = { + ["combinerXL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["lambda"] = {1}}}, + ["combinerHFL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["lambda"] = {1}}}, + ["combinerHRL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["lambda"] = {1}}}, + }, + + ["nerv.AffineLayer"] = { + ["biAffineL1"] = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["pr"] = pr, ["lambda"] = {1, 1}}}, + ["outputL"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.vocab:size()}, ["direct_update"] = du, ["pr"] = pr}}, + }, + + ["nerv.TanhLayer"] = { + ["biTanhL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}}}, + }, + + ["nerv.SoftmaxCELayerT"] = { + ["softmaxL"] = {{}, {["dim_in"] = {global_conf.vocab:size(), global_conf.vocab:size()}, ["dim_out"] = {1}}}, + }, + } + + if global_conf.layer_num > 1 then + nerv.error("this script currently do not support more than one layer") + end + --[[ + for l = 2, global_conf.layer_num do + layers["nerv.DropoutLayerT"]["dropoutL" .. l] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}}} + layers["nerv.LSTMLayerT"]["lstmL" .. l] = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["pr"] = pr}} + layers["nerv.CombinerLayer"]["combinerL" .. l] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["lambda"] = {1}}} + end + ]]-- + + local layerRepo = nerv.LayerRepo(layers, pr, global_conf) + nerv.printf("%s preparing layers end.\n", global_conf.sche_log_pre) + return layerRepo +end + +--global_conf: table +--layerRepo: nerv.LayerRepo +--Returns: a nerv.TNN +function prepare_tnn(global_conf, layerRepo) + nerv.printf("%s Generate and initing TNN ...\n", global_conf.sche_log_pre) + + --input: input_w, input_w, ... input_w_now, last_activation + local connections_t = { + {"<input>[1]", "selectL1[1]", 0}, + + --{"selectL1[1]", "recurrentL1[1]", 0}, + --{"recurrentL1[1]", "sigmoidL1[1]", 0}, + --{"sigmoidL1[1]", "combinerL1[1]", 0}, + --{"combinerL1[1]", "recurrentL1[2]", 1}, + + {"selectL1[1]", "combinerXL1[1]", 0}, + {"combinerXL1[1]", "gruFL1[1]", 0}, + {"gruFL1[1]", "combinerHFL1[1]", 0}, + {"combinerHFL1[1]", "gruFL1[2]", 1}, + + {"combinerXL1[2]", "gruRL1[1]", 0}, + {"gruRL1[1]", "combinerHRL1[1]", 0}, + {"combinerHRL1[1]", "gruRL1[2]", -1}, + + {"combinerHFL1[2]", "biAffineL1[1]", 0}, + {"combinerHRL1[2]", "biAffineL1[2]", 0}, + {"biAffineL1[1]", "biTanhL1[1]", 0}, + {"biTanhL1[1]", "dropoutL1[1]", 0}, + + {"dropoutL"..global_conf.layer_num.."[1]", "outputL[1]", 0}, + {"outputL[1]", "softmaxL[1]", 0}, + {"<input>[2]", "softmaxL[2]", 0}, + {"softmaxL[1]", "<output>[1]", 0} + } + + --[[ + for l = 2, global_conf.layer_num do + table.insert(connections_t, {"dropoutL"..(l-1).."[1]", "lstmL"..l.."[1]", 0}) + table.insert(connections_t, {"lstmL"..l.."[2]", "lstmL"..l.."[3]", 1}) + table.insert(connections_t, {"lstmL"..l.."[1]", "combinerL"..l.."[1]", 0}) + table.insert(connections_t, {"combinerL"..l.."[1]", "lstmL"..l.."[2]", 1}) + table.insert(connections_t, {"combinerL"..l.."[2]", "dropoutL"..l.."[1]", 0}) + end + ]]-- + + --[[ + printf("%s printing DAG connections:\n", global_conf.sche_log_pre) + for key, value in pairs(connections_t) do + printf("\t%s->%s\n", key, value) + end + ]]-- + + local tnn = nerv.TNN("TNN", global_conf, {["dim_in"] = {1, global_conf.vocab:size()}, + ["dim_out"] = {1}, ["sub_layers"] = layerRepo, + ["connections"] = connections_t, ["clip_t"] = global_conf.clip_t, + }) + + tnn:init(global_conf.batch_size, global_conf.chunk_size) + + nerv.printf("%s Initing TNN end.\n", global_conf.sche_log_pre) + return tnn +end + +function load_net(global_conf, next_iter) + prepare_parameters(global_conf, next_iter) + local layerRepo = prepare_layers(global_conf) + local tnn = prepare_tnn(global_conf, layerRepo) + return tnn +end + +local train_fn, valid_fn, test_fn +global_conf = {} +local set = arg[1] --"test" + +if (set == "ptb") then + +root_dir = '/home/slhome/txh18/workspace' +data_dir = root_dir .. '/ptb/DATA' +train_fn = data_dir .. '/ptb.train.txt.adds' +valid_fn = data_dir .. '/ptb.valid.txt.adds' +test_fn = data_dir .. '/ptb.test.txt.adds' +vocab_fn = data_dir .. '/vocab' + +qdata_dir = root_dir .. '/ptb/questionGen/gen' + +global_conf = { + lrate = 0.015, wcost = 1e-5, momentum = 0, clip_t = 5, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + nn_act_default = 0, + + hidden_size = 300, + layer_num = 1, + chunk_size = 90, + batch_size = 32, + max_iter = 35, + lr_decay = 1.003, + decay_iter = 10, + param_random = function() return (math.random() / 5 - 0.1) end, + dropout_str = "0", + + train_fn = train_fn, + valid_fn = valid_fn, + test_fn = test_fn, + vocab_fn = vocab_fn, + max_sen_len = 90, + sche_log_pre = "[SCHEDULER]:", + log_w_num = 40000, --give a message when log_w_num words have been processed + timer = nerv.Timer(), + work_dir_base = '/home/slhome/txh18/workspace/ptb/EXP-nerv/bigrulm_v1.0' +} + +elseif (set == "msr_sc") then + +data_dir = '/home/slhome/txh18/workspace/sentenceCompletion/DATA_PV2' +train_fn = data_dir .. '/normed_all.sf.len60.adds.train' +valid_fn = data_dir .. '/normed_all.sf.len60.adds.dev' +test_fn = data_dir .. '/answer_normed.adds' +vocab_fn = data_dir .. '/normed_all.choose.vocab30000.addqvocab' + +global_conf = { + lrate = 1, wcost = 1e-6, momentum = 0, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + nn_act_default = 0, + + hidden_size = 300, + layer_num = 1, + chunk_size = 15, + batch_size = 10, + max_iter = 30, + decay_iter = 10, + lr_decay = 1.003, + param_random = function() return (math.random() / 5 - 0.1) end, + dropout_str = "0", + + train_fn = train_fn, + valid_fn = valid_fn, + test_fn = test_fn, + vocab_fn = vocab_fn, + sche_log_pre = "[SCHEDULER]:", + log_w_num = 400000, --give a message when log_w_num words have been processed + timer = nerv.Timer(), + work_dir_base = '/home/slhome/txh18/workspace/sentenceCompletion/EXP-Nerv/rnnlm_test' +} + +elseif (set == "twitter") then + +root_dir = '/home/slhome/txh18/workspace' +data_dir = root_dir .. '/twitter_new/DATA' +train_fn = data_dir .. '/twitter.choose.adds' +valid_fn = data_dir .. '/twitter.valid.adds' +test_fn = data_dir .. '/comm.test.choose-ppl.adds' +vocab_fn = data_dir .. '/twitter.choose.train.vocab' + +--qdata_dir = root_dir .. '/ptb/questionGen/gen' + +global_conf = { + lrate = 0.15, wcost = 1e-5, momentum = 0, clip_t = 5, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + nn_act_default = 0, + + hidden_size = 300, + layer_num = 1, + chunk_size = 15, + batch_size = 20, + max_iter = 35, + lr_decay = 1.003, + decay_iter = 10, + param_random = function() return (math.random() / 5 - 0.1) end, + dropout_str = "0", + + train_fn = train_fn, + valid_fn = valid_fn, + test_fn = test_fn, + vocab_fn = vocab_fn, + max_sen_len = 90, + sche_log_pre = "[SCHEDULER]:", + log_w_num = 40000, --give a message when log_w_num words have been processed + timer = nerv.Timer(), + work_dir_base = root_dir .. '/twitter_new/EXP-nerv/bilstmlm_v1.0' +} + +else + +valid_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text' +train_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text' +test_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text' +vocab_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text' + +global_conf = { + lrate = 0.01, wcost = 1e-5, momentum = 0, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + nn_act_default = 0, + + hidden_size = 20, + layer_num = 1, + chunk_size = 20, + batch_size = 10, + max_iter = 2, + param_random = function() return (math.random() / 5 - 0.1) end, + dropout_str = "0", + + train_fn = train_fn, + valid_fn = valid_fn, + test_fn = test_fn, + max_sen_len = 80, + lr_decay = 1.003, + decay_iter = 10, + vocab_fn = vocab_fn, + sche_log_pre = "[SCHEDULER]:", + log_w_num = 10, --give a message when log_w_num words have been processed + timer = nerv.Timer(), + work_dir_base = '/home/slhome/txh18/workspace/nerv/play/testEXP/tnn_bilstmlm_test' +} + +end + +lr_half = false --can not be local, to be set by loadstring +start_iter = -1 +start_lr = nil +ppl_last = 100000 +commands_str = "train:test" +commands = {} +test_iter = -1 + +--for testout(question) +q_file = "/home/slhome/txh18/workspace/ptb/questionGen/gen/ptb.test.txt.q10rs1_Msss.adds" + +if arg[2] ~= nil then + nerv.printf("%s applying arg[2](%s)...\n", global_conf.sche_log_pre, arg[2]) + loadstring(arg[2])() + nerv.LMUtil.wait(0.5) +else + nerv.printf("%s no user setting, all default...\n", global_conf.sche_log_pre) +end + +global_conf.work_dir = global_conf.work_dir_base .. 'h' .. global_conf.hidden_size .. 'l' .. global_conf.layer_num .. 'ch' .. global_conf.chunk_size .. 'ba' .. global_conf.batch_size .. 'slr' .. global_conf.lrate .. 'wc' .. global_conf.wcost .. 'dr' .. global_conf.dropout_str +global_conf.train_fn_shuf = global_conf.work_dir .. '/train_fn_shuf' +global_conf.train_fn_shuf_bak = global_conf.train_fn_shuf .. '_bak' +global_conf.param_fn = global_conf.work_dir .. "/params" +global_conf.dropout_list = nerv.SUtil.parse_schedule(global_conf.dropout_str) +global_conf.log_fn = global_conf.work_dir .. '/log_lstm_tnn_' .. commands_str ..os.date("_TT%m_%d_%X",os.time()) +global_conf.log_fn, _ = string.gsub(global_conf.log_fn, ':', '-') +commands = nerv.SUtil.parse_commands_set(commands_str) + +if start_lr ~= nil then + global_conf.lrate = start_lr --starting lr can be set by user(arg[2]) +end + +nerv.printf("%s creating work_dir(%s)...\n", global_conf.sche_log_pre, global_conf.work_dir) +nerv.LMUtil.wait(2) +os.execute("mkdir -p "..global_conf.work_dir) +os.execute("cp " .. global_conf.train_fn .. " " .. global_conf.train_fn_shuf) + +--redirecting log outputs! +nerv.SUtil.log_redirect(global_conf.log_fn) +nerv.LMUtil.wait(2) + +----------------printing options--------------------------------- +nerv.printf("%s printing global_conf...\n", global_conf.sche_log_pre) +for id, value in pairs(global_conf) do + nerv.printf("%s:\t%s\n", id, tostring(value)) +end +nerv.LMUtil.wait(2) + +nerv.printf("%s printing training scheduling options...\n", global_conf.sche_log_pre) +nerv.printf("lr_half:\t%s\n", tostring(lr_half)) +nerv.printf("start_iter:\t%s\n", tostring(start_iter)) +nerv.printf("ppl_last:\t%s\n", tostring(ppl_last)) +nerv.printf("commands_str:\t%s\n", commands_str) +nerv.printf("test_iter:\t%s\n", tostring(test_iter)) +nerv.printf("%s printing training scheduling end.\n", global_conf.sche_log_pre) +nerv.LMUtil.wait(2) +------------------printing options end------------------------------ + +math.randomseed(1) + +local vocab = nerv.LMVocab() +global_conf["vocab"] = vocab +nerv.printf("%s building vocab...\n", global_conf.sche_log_pre) +global_conf.vocab:build_file(global_conf.vocab_fn, false) +ppl_rec = {} + +local final_iter = -1 +if commands["train"] == 1 then + if start_iter == -1 then + prepare_parameters(global_conf, -1) --write pre_generated params to param.0 file + end + + if start_iter == -1 or start_iter == 0 then + nerv.printf("===INITIAL VALIDATION===\n") + local tnn = load_net(global_conf, 0) + global_conf.paramRepo = tnn:get_params() --get auto-generted params + global_conf.paramRepo:export(global_conf.param_fn .. '.0', nil) --some parameters are auto-generated, saved again to param.0 file + global_conf.dropout_rate = 0 + local result = LMTrainer.lm_process_file_birnn(global_conf, global_conf.valid_fn, tnn, false) --false update! + nerv.LMUtil.wait(1) + ppl_rec[0] = {} + ppl_rec[0].valid = result:ppl_all("birnn") + ppl_last = ppl_rec[0].valid + ppl_rec[0].train = 0 + ppl_rec[0].test = 0 + ppl_rec[0].lr = 0 + + start_iter = 1 + + nerv.printf("\n") + end + + for iter = start_iter, global_conf.max_iter, 1 do + final_iter = iter --for final testing + global_conf.sche_log_pre = "[SCHEDULER ITER"..iter.." LR"..global_conf.lrate.."]:" + tnn = load_net(global_conf, iter - 1) + nerv.printf("===ITERATION %d LR %f===\n", iter, global_conf.lrate) + global_conf.dropout_rate = nerv.SUtil.sche_get(global_conf.dropout_list, iter) + result = LMTrainer.lm_process_file_birnn(global_conf, global_conf.train_fn_shuf, tnn, true) --true update! + global_conf.dropout_rate = 0 + ppl_rec[iter] = {} + ppl_rec[iter].train = result:ppl_all("birnn") + --shuffling training file + nerv.printf("%s shuffling training file\n", global_conf.sche_log_pre) + os.execute('cp ' .. global_conf.train_fn_shuf .. ' ' .. global_conf.train_fn_shuf_bak) + os.execute('cat ' .. global_conf.train_fn_shuf_bak .. ' | sort -R --random-source=/dev/zero > ' .. global_conf.train_fn_shuf) + nerv.printf("===PEEK ON TEST %d===\n", iter) + result = LMTrainer.lm_process_file_birnn(global_conf, global_conf.test_fn, tnn, false) --false update! + ppl_rec[iter].test = result:ppl_all("birnn") + nerv.printf("===VALIDATION %d===\n", iter) + result = LMTrainer.lm_process_file_birnn(global_conf, global_conf.valid_fn, tnn, false) --false update! + ppl_rec[iter].valid = result:ppl_all("birnn") + ppl_rec[iter].lr = global_conf.lrate + if ((ppl_last / ppl_rec[iter].valid < global_conf.lr_decay or lr_half == true) and iter > global_conf.decay_iter) then + global_conf.lrate = (global_conf.lrate * 0.6) + end + if ppl_rec[iter].valid < ppl_last then + nerv.printf("%s PPL improves, saving net to file %s.%d...\n", global_conf.sche_log_pre, global_conf.param_fn, iter) + global_conf.paramRepo:export(global_conf.param_fn .. '.' .. tostring(iter), nil) + else + nerv.printf("%s PPL did not improve, rejected, copying param file of last iter...\n", global_conf.sche_log_pre) + os.execute('cp ' .. global_conf.param_fn..'.'..tostring(iter - 1) .. ' ' .. global_conf.param_fn..'.'..tostring(iter)) + end + if ppl_last / ppl_rec[iter].valid < global_conf.lr_decay or lr_half == true then + lr_half = true + end + if ppl_rec[iter].valid < ppl_last then + ppl_last = ppl_rec[iter].valid + end + nerv.printf("\n") + nerv.LMUtil.wait(2) + end + nerv.info("saving final nn to param.final") + os.execute('cp ' .. global_conf.param_fn .. '.' .. tostring(final_iter) .. ' ' .. global_conf.param_fn .. '.final') + + nerv.printf("===VALIDATION PPL record===\n") + for i, _ in pairs(ppl_rec) do + nerv.printf("<ITER%d LR%.5f train:%.3f valid:%.3f test:%.3f> \n", i, ppl_rec[i].lr, ppl_rec[i].train, ppl_rec[i].valid, ppl_rec[i].test) + end + nerv.printf("\n") +end --if commands["train"] + +if commands["test"] == 1 then + nerv.printf("===FINAL TEST===\n") + global_conf.sche_log_pre = "[SCHEDULER FINAL_TEST]:" + if final_iter ~= -1 and test_iter == -1 then + test_iter = final_iter + end + if test_iter == -1 then + test_iter = "final" + end + tnn = load_net(global_conf, test_iter) + global_conf.dropout_rate = 0 + LMTrainer.lm_process_file_birnn(global_conf, global_conf.test_fn, tnn, false) --false update! +end --if commands["test"] + +if commands["testout"] == 1 then + nerv.printf("===TEST OUT===\n") + nerv.printf("q_file:\t%s\n", q_file) + local q_fn = q_file --qdata_dir .. '/' .. q_file + global_conf.sche_log_pre = "[SCHEDULER FINAL_TEST]:" + if final_iter ~= -1 and test_iter == -1 then + test_iter = final_iter + end + if test_iter == -1 then + test_iter = "final" + end + tnn = load_net(global_conf, test_iter) + global_conf.dropout_rate = 0 + LMTrainer.lm_process_file_birnn(global_conf, q_fn, tnn, false, + {["one_sen_report"] = true}) --false update! +end --if commands["testout"] + + |