aboutsummaryrefslogtreecommitdiff
path: root/nerv
diff options
context:
space:
mode:
authortxh18 <[email protected]>2015-11-23 14:24:54 +0800
committertxh18 <[email protected]>2015-11-23 14:24:54 +0800
commit47215f8aed55fe2912391c69cc70b90f85a776a5 (patch)
treed58c60e1790b10b6500fa64f9ea1141e84d147dc /nerv
parente7a45e14d75959a3d4095ac34158a8abc3e995cf (diff)
implementing GateFFF layer
Diffstat (limited to 'nerv')
-rw-r--r--nerv/examples/lmptb/rnn/layers/gate_fff.lua65
1 files changed, 33 insertions, 32 deletions
diff --git a/nerv/examples/lmptb/rnn/layers/gate_fff.lua b/nerv/examples/lmptb/rnn/layers/gate_fff.lua
index 6a588fc..1010639 100644
--- a/nerv/examples/lmptb/rnn/layers/gate_fff.lua
+++ b/nerv/examples/lmptb/rnn/layers/gate_fff.lua
@@ -2,64 +2,65 @@ local GateFFFLayer = nerv.class('nerv.GateFFFLayer', 'nerv.Layer')
function GateFFFLayer:__init(id, global_conf, layer_conf)
self.id = id
- self.ltp = layer_conf.ltp
- self.bp = layer_conf.bp
self.dim_in = layer_conf.dim_in
self.dim_out = layer_conf.dim_out
self.gconf = global_conf
- self:check_dim_len(1, 1) -- exactly one input and one output
+
+ self.ltp1 = self:find_param("ltp1", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[1], self.dim_out[1]}) --layer_conf.ltp
+ self.ltp2 = self:find_param("ltp2", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp
+ self.ltp3 = self:find_param("ltp3", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[3], self.dim_out[1]}) --layer_conf.ltp
+ self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]})--layer_conf.bp
+
+ self:check_dim_len(3, 1) -- exactly one input and one output
end
function GateFFFLayer:init(batch_size)
- if self.ltp.trans:ncol() ~= self.bp.trans:ncol() then
+ if self.ltp1.trans:ncol() ~= self.bp.trans:ncol() or
+ self.ltp2.trans:ncol() ~= self.bp.trans:ncol() or
+ self.ltp3.trans:ncol() ~= self.bp.trans:ncol() then
nerv.error("mismatching dimensions of linear transform and bias paramter")
end
- if self.dim_in[1] ~= self.ltp.trans:nrow() then
+ if self.dim_in[1] ~= self.ltp1.trans:nrow() or
+ self.dim_in[2] ~= self.ltp2.trans:nrow() or
+ self.dim_in[3] ~= self.ltp3.trans:nrow() then
nerv.error("mismatching dimensions of linear transform parameter and input")
end
- if self.dim_out[1] ~= self.ltp.trans:ncol() then
+ if self.dim_out[1] ~= self.ltp1.trans:ncol() then
nerv.error("mismatching dimensions of linear transform parameter and output")
end
- self.ltp_grad = self.ltp.trans:create()
- self.ltp:train_init()
+ self.ltp1:train_init()
+ self.ltp2:train_init()
+ self.ltp3:train_init()
self.bp:train_init()
+ self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1])
end
function GateFFFLayer:batch_resize(batch_size)
- -- do nothing
-end
-
-function GateFFFLayer:update(bp_err, input, output)
- if self.direct_update == true then
- local gconf = self.gconf
- if gconf.momentum > 0 then
- self.ltp.correction:mul(input[1], bp_err[1], 1.0, gconf.momentum, 'T', 'N')
- self.bp.correction:add(self.bp.correction, bp_err[1]:colsum(), gconf.momentum, 1)
- -- momentum gain
- local mmt_gain = 1.0 / (1.0 - gconf.momentum)
- local n = self.gconf.batch_size * mmt_gain
- -- perform update
- self.ltp.trans:add(self.ltp.trans, self.ltp.correction, 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, - gconf.lrate / n)
- self.bp.trans:add(self.bp.trans, self.bp.correction, 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, - gconf.lrate / n)
- else
- self.ltp.trans:mul(input[1], bp_err[1], - gconf.lrate / gconf.batch_size, 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, 'T', 'N')
- self.bp.trans:add(self.bp.trans, bp_err[1]:colsum(), 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, - gconf.lrate / gconf.batch_size)
- end
- else
- self.ltp:update_by_err_input(bp_err[1], input[1])
- self.bp:update_by_gradient(bp_err[1]:colsum())
+ if self.err_m:nrow() ~= batch_size then
+ self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1])
end
end
function GateFFFLayer:propagate(input, output)
-- apply linear transform
- output[1]:mul(input[1], self.ltp.trans, 1.0, 0.0, 'N', 'N')
+ output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N')
+ output[1]:mul(input[2], self.ltp2.trans, 1.0, 1.0, 'N', 'N')
+ output[1]:mul(input[3], self.ltp3.trans, 1.0, 1.0, 'N', 'N')
-- add bias
output[1]:add_row(self.bp.trans, 1.0)
+ output[1]:sigmoid(output[1])
end
function GateFFFLayer:back_propagate(bp_err, next_bp_err, input, output)
- next_bp_err[1]:mul(bp_err[1], self.ltp.trans, 1.0, 0.0, 'N', 'T')
+ self.err_bakm:sigmoid_grad(bp_err[1], output[1])
+ next_bp_err[1]:mul(self.err_bakm, self.ltp1.trans, 1.0, 0.0, 'N', 'T')
+ next_bp_err[2]:mul(self.err_bakm, self.ltp2.trans, 1.0, 0.0, 'N', 'T')
+ next_bp_err[3]:mul(self.err_bakm, self.ltp3.trans, 1.0, 0.0, 'N', 'T')
+end
+
+function GateFFFLayer:update(bp_err, input, output)
+ self.ltp:update_by_err_input(bp_err[1], input[1])
+ self.bp:update_by_gradient(bp_err[1]:colsum())
end
function GateFFFLayer:get_params()