summaryrefslogtreecommitdiff
path: root/nerv/layer/lstm.lua
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2016-02-21 00:28:54 +0800
committerDeterminant <[email protected]>2016-02-21 00:28:54 +0800
commit8f19acf152652ff887d3fe978e78a076dca60611 (patch)
tree8ced512733bca426d479f44320f15110090ac986 /nerv/layer/lstm.lua
parent620c1971c3c821337cd16cca20cddd27f7bc6085 (diff)
add layers from `layersT/` to `layer/`
Diffstat (limited to 'nerv/layer/lstm.lua')
-rw-r--r--nerv/layer/lstm.lua140
1 files changed, 140 insertions, 0 deletions
diff --git a/nerv/layer/lstm.lua b/nerv/layer/lstm.lua
new file mode 100644
index 0000000..500bd87
--- /dev/null
+++ b/nerv/layer/lstm.lua
@@ -0,0 +1,140 @@
+local LSTMLayer = nerv.class('nerv.LSTMLayer', 'nerv.Layer')
+
+function LSTMLayer:__init(id, global_conf, layer_conf)
+ -- input1:x
+ -- input2:h
+ -- input3:c
+ self.id = id
+ self.dim_in = layer_conf.dim_in
+ self.dim_out = layer_conf.dim_out
+ self.gconf = global_conf
+
+ -- prepare a DAGLayer to hold the lstm structure
+ local pr = layer_conf.pr
+ if pr == nil then
+ pr = nerv.ParamRepo()
+ end
+
+ local function ap(str)
+ return self.id .. '.' .. str
+ end
+ local din1, din2, din3 = self.dim_in[1], self.dim_in[2], self.dim_in[3]
+ local dout1, dout2, dout3 = self.dim_out[1], self.dim_out[2], self.dim_out[3]
+ local layers = {
+ ["nerv.CombinerLayer"] = {
+ [ap("inputXDup")] = {{}, {dim_in = {din1},
+ dim_out = {din1, din1, din1, din1},
+ lambda = {1}}},
+
+ [ap("inputHDup")] = {{}, {dim_in = {din2},
+ dim_out = {din2, din2, din2, din2},
+ lambda = {1}}},
+
+ [ap("inputCDup")] = {{}, {dim_in = {din3},
+ dim_out = {din3, din3, din3},
+ lambda = {1}}},
+
+ [ap("mainCDup")] = {{}, {dim_in = {din3, din3},
+ dim_out = {din3, din3, din3},
+ lambda = {1, 1}}},
+ },
+ ["nerv.AffineLayer"] = {
+ [ap("mainAffineL")] = {{}, {dim_in = {din1, din2},
+ dim_out = {dout1},
+ pr = pr}},
+ },
+ ["nerv.TanhLayer"] = {
+ [ap("mainTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}},
+ [ap("outputTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}},
+ },
+ ["nerv.LSTMGateLayer"] = {
+ [ap("forgetGateL")] = {{}, {dim_in = {din1, din2, din3},
+ dim_out = {din3}, pr = pr}},
+ [ap("inputGateL")] = {{}, {dim_in = {din1, din2, din3},
+ dim_out = {din3}, pr = pr}},
+ [ap("outputGateL")] = {{}, {dim_in = {din1, din2, din3},
+ dim_out = {din3}, pr = pr}},
+
+ },
+ ["nerv.ElemMulLayer"] = {
+ [ap("inputGMulL")] = {{}, {dim_in = {din3, din3},
+ dim_out = {din3}}},
+ [ap("forgetGMulL")] = {{}, {dim_in = {din3, din3},
+ dim_out = {din3}}},
+ [ap("outputGMulL")] = {{}, {dim_in = {din3, din3},
+ dim_out = {din3}}},
+ },
+ }
+
+ local layerRepo = nerv.LayerRepo(layers, pr, global_conf)
+
+ local connections = {
+ ["<input>[1]"] = ap("inputXDup[1]"),
+ ["<input>[2]"] = ap("inputHDup[1]"),
+ ["<input>[3]"] = ap("inputCDup[1]"),
+
+ [ap("inputXDup[1]")] = ap("mainAffineL[1]"),
+ [ap("inputHDup[1]")] = ap("mainAffineL[2]"),
+ [ap("mainAffineL[1]")] = ap("mainTanhL[1]"),
+
+ [ap("inputXDup[2]")] = ap("inputGateL[1]"),
+ [ap("inputHDup[2]")] = ap("inputGateL[2]"),
+ [ap("inputCDup[1]")] = ap("inputGateL[3]"),
+
+ [ap("inputXDup[3]")] = ap("forgetGateL[1]"),
+ [ap("inputHDup[3]")] = ap("forgetGateL[2]"),
+ [ap("inputCDup[2]")] = ap("forgetGateL[3]"),
+
+ [ap("mainTanhL[1]")] = ap("inputGMulL[1]"),
+ [ap("inputGateL[1]")] = ap("inputGMulL[2]"),
+
+ [ap("inputCDup[3]")] = ap("forgetGMulL[1]"),
+ [ap("forgetGateL[1]")] = ap("forgetGMulL[2]"),
+
+ [ap("inputGMulL[1]")] = ap("mainCDup[1]"),
+ [ap("forgetGMulL[1]")] = ap("mainCDup[2]"),
+
+ [ap("inputXDup[4]")] = ap("outputGateL[1]"),
+ [ap("inputHDup[4]")] = ap("outputGateL[2]"),
+ [ap("mainCDup[3]")] = ap("outputGateL[3]"),
+
+ [ap("mainCDup[2]")] = "<output>[2]",
+ [ap("mainCDup[1]")] = ap("outputTanhL[1]"),
+
+ [ap("outputTanhL[1]")] = ap("outputGMulL[1]"),
+ [ap("outputGateL[1]")] = ap("outputGMulL[2]"),
+
+ [ap("outputGMulL[1]")] = "<output>[1]",
+ }
+ self.dag = nerv.DAGLayer(self.id, global_conf,
+ {dim_in = self.dim_in,
+ dim_out = self.dim_out,
+ sub_layers = layerRepo,
+ connections = connections})
+
+ self:check_dim_len(3, 2) -- x, h, c and h, c
+end
+
+function LSTMLayer:init(batch_size, chunk_size)
+ self.dag:init(batch_size, chunk_size)
+end
+
+function LSTMLayer:batch_resize(batch_size, chunk_size)
+ self.dag:batch_resize(batch_size, chunk_size)
+end
+
+function LSTMLayer:update(bp_err, input, output, t)
+ self.dag:update(bp_err, input, output, t)
+end
+
+function LSTMLayer:propagate(input, output, t)
+ self.dag:propagate(input, output, t)
+end
+
+function LSTMLayer:back_propagate(bp_err, next_bp_err, input, output, t)
+ self.dag:back_propagate(bp_err, next_bp_err, input, output, t)
+end
+
+function LSTMLayer:get_params()
+ return self.dag:get_params()
+end