aboutsummaryrefslogtreecommitdiff
path: root/nerv/examples
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2016-02-29 19:49:18 +0800
committerDeterminant <[email protected]>2016-02-29 19:49:18 +0800
commitaccadc2c0c9a12a07ff39df3ee2e02f399054d8f (patch)
tree39e2ffb1e14527eecc69fa2855e29772969c2e3a /nerv/examples
parent550680eacd00555817df19d2b59a20a92df77c42 (diff)
add network config for timit baseline
Diffstat (limited to 'nerv/examples')
-rw-r--r--nerv/examples/swb_baseline.lua2
-rw-r--r--nerv/examples/swb_baseline2.lua201
-rw-r--r--nerv/examples/timit_baseline2.lua215
3 files changed, 417 insertions, 1 deletions
diff --git a/nerv/examples/swb_baseline.lua b/nerv/examples/swb_baseline.lua
index 51052ba..cacc401 100644
--- a/nerv/examples/swb_baseline.lua
+++ b/nerv/examples/swb_baseline.lua
@@ -9,7 +9,7 @@ gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9,
cv_scp = "/slfs1/users/mfy43/swb_ivec/train_cv.scp",
htk_conf = "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf",
initialized_param = {"/slfs1/users/mfy43/swb_init.nerv",
- "/slfs1/users/mfy43/swb_global_transf.nerv"},
+ "/slfs1/users/mfy43/swb_global_transf.nerv"},
debug = false}
function make_layer_repo(param_repo)
diff --git a/nerv/examples/swb_baseline2.lua b/nerv/examples/swb_baseline2.lua
new file mode 100644
index 0000000..0e2a6e0
--- /dev/null
+++ b/nerv/examples/swb_baseline2.lua
@@ -0,0 +1,201 @@
+require 'htk_io'
+gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9,
+ cumat_type = nerv.CuMatrixFloat,
+ mmat_type = nerv.MMatrixFloat,
+ rearrange = true, -- just to make the context order consistent with old results, deprecated
+ frm_ext = 5,
+ frm_trim = 5, -- trim the first and last 5 frames, TNet just does this, deprecated
+ tr_scp = "/speechlab/users/mfy43/swb50/train_bp.scp",
+ cv_scp = "/speechlab/users/mfy43/swb50/train_cv.scp",
+ htk_conf = "/speechlab/users/mfy43/swb50/plp_0_d_a.conf",
+ initialized_param = {"/speechlab/users/mfy43/swb50/swb_init.nerv",
+ "/speechlab/users/mfy43/swb50/swb_global_transf.nerv"},
+ debug = false}
+
+function make_layer_repo(param_repo)
+ local layer_repo = nerv.LayerRepo(
+ {
+ -- global transf
+ ["nerv.BiasLayer"] =
+ {
+ blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}},
+ blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}}
+ },
+ ["nerv.WindowLayer"] =
+ {
+ wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}},
+ wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}}
+ },
+ -- biased linearity
+ ["nerv.AffineLayer"] =
+ {
+ affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"},
+ {dim_in = {429}, dim_out = {2048}}},
+ affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"},
+ {dim_in = {2048}, dim_out = {2048}}},
+ affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"},
+ {dim_in = {2048}, dim_out = {3001}}}
+ },
+ ["nerv.SigmoidLayer"] =
+ {
+ sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+ sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}}
+ },
+ ["nerv.SoftmaxCELayer"] = -- softmax + ce criterion layer for finetune output
+ {
+ ce_crit = {{}, {dim_in = {3001, 1}, dim_out = {1}, compressed = true}}
+ },
+ ["nerv.SoftmaxLayer"] = -- softmax for decode output
+ {
+ softmax = {{}, {dim_in = {3001}, dim_out = {3001}}}
+ }
+ }, param_repo, gconf)
+
+ layer_repo:add_layers(
+ {
+ ["nerv.DAGLayer"] =
+ {
+ global_transf = {{}, {
+ dim_in = {429}, dim_out = {429},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "blayer1[1]",
+ ["blayer1[1]"] = "wlayer1[1]",
+ ["wlayer1[1]"] = "blayer2[1]",
+ ["blayer2[1]"] = "wlayer2[1]",
+ ["wlayer2[1]"] = "<output>[1]"
+ }
+ }},
+ main = {{}, {
+ dim_in = {429}, dim_out = {3001},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "affine0[1]",
+ ["affine0[1]"] = "sigmoid0[1]",
+ ["sigmoid0[1]"] = "affine1[1]",
+ ["affine1[1]"] = "sigmoid1[1]",
+ ["sigmoid1[1]"] = "affine2[1]",
+ ["affine2[1]"] = "sigmoid2[1]",
+ ["sigmoid2[1]"] = "affine3[1]",
+ ["affine3[1]"] = "sigmoid3[1]",
+ ["sigmoid3[1]"] = "affine4[1]",
+ ["affine4[1]"] = "sigmoid4[1]",
+ ["sigmoid4[1]"] = "affine5[1]",
+ ["affine5[1]"] = "sigmoid5[1]",
+ ["sigmoid5[1]"] = "affine6[1]",
+ ["affine6[1]"] = "sigmoid6[1]",
+ ["sigmoid6[1]"] = "affine7[1]",
+ ["affine7[1]"] = "<output>[1]"
+ }
+ }}
+ }
+ }, param_repo, gconf)
+
+ layer_repo:add_layers(
+ {
+ ["nerv.DAGLayer"] =
+ {
+ ce_output = {{}, {
+ dim_in = {429, 1}, dim_out = {1},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "main[1]",
+ ["main[1]"] = "ce_crit[1]",
+ ["<input>[2]"] = "ce_crit[2]",
+ ["ce_crit[1]"] = "<output>[1]"
+ }
+ }},
+ softmax_output = {{}, {
+ dim_in = {429}, dim_out = {3001},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "main[1]",
+ ["main[1]"] = "softmax[1]",
+ ["softmax[1]"] = "<output>[1]"
+ }
+ }}
+ }
+ }, param_repo, gconf)
+
+ return layer_repo
+end
+
+function get_network(layer_repo)
+ return layer_repo:get_layer("ce_output")
+end
+
+function get_decode_network(layer_repo)
+ return layer_repo:get_layer("softmax_output")
+end
+
+function get_global_transf(layer_repo)
+ return layer_repo:get_layer("global_transf")
+end
+
+function make_readers(scp_file, layer_repo)
+ return {
+ {reader = nerv.TNetReader(gconf,
+ {
+ id = "main_scp",
+ scp_file = scp_file,
+ conf_file = gconf.htk_conf,
+ frm_ext = gconf.frm_ext,
+ mlfs = {
+ phone_state = {
+ file = "/speechlab/users/mfy43/swb50/ref.mlf",
+ format = "map",
+ format_arg = "/speechlab/users/mfy43/swb50/dict",
+ dir = "*/",
+ ext = "lab"
+ }
+ }
+ }),
+ data = {main_scp = 429, phone_state = 1}}
+ }
+end
+
+function make_buffer(readers)
+ return nerv.SGDBuffer(gconf,
+ {
+ buffer_size = gconf.buffer_size,
+ randomize = gconf.randomize,
+ readers = readers,
+ use_gpu = true
+ })
+end
+
+function get_input_order()
+ return {{id = "main_scp", global_transf = true},
+ {id = "phone_state"}}
+end
+
+function get_accuracy(layer_repo)
+ local ce_crit = layer_repo:get_layer("ce_crit")
+ return ce_crit.total_correct / ce_crit.total_frames * 100
+end
+
+function print_stat(layer_repo)
+ local ce_crit = layer_repo:get_layer("ce_crit")
+ nerv.info("*** training stat begin ***")
+ nerv.printf("cross entropy:\t\t%.8f\n", ce_crit.total_ce)
+ nerv.printf("correct:\t\t%d\n", ce_crit.total_correct)
+ nerv.printf("frames:\t\t\t%d\n", ce_crit.total_frames)
+ nerv.printf("err/frm:\t\t%.8f\n", ce_crit.total_ce / ce_crit.total_frames)
+ nerv.printf("accuracy:\t\t%.3f%%\n", get_accuracy(layer_repo))
+ nerv.info("*** training stat end ***")
+end
diff --git a/nerv/examples/timit_baseline2.lua b/nerv/examples/timit_baseline2.lua
new file mode 100644
index 0000000..174b9e7
--- /dev/null
+++ b/nerv/examples/timit_baseline2.lua
@@ -0,0 +1,215 @@
+require 'kaldi_io'
+gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9,
+ cumat_type = nerv.CuMatrixFloat,
+ mmat_type = nerv.MMatrixFloat,
+ frm_ext = 5,
+ tr_scp = "ark:/speechlab/tools/KALDI/kaldi-master/src/featbin/copy-feats " ..
+ "scp:/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_prepare/train.scp ark:- |",
+ cv_scp = "ark:/speechlab/tools/KALDI/kaldi-master/src/featbin/copy-feats " ..
+ "scp:/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_prepare/cv.scp ark:- |",
+ initialized_param = {"/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_prepare/nnet_init.nerv",
+ "/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_prepare/nnet_output.nerv",
+ "/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_prepare/nnet_trans.nerv"},
+ decode_param = {"/speechlab/users/mfy43/timit/nnet_init_20160229015745_iter_13_lr0.013437_tr72.434_cv58.729.nerv",
+ "/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_prepare/nnet_trans.nerv"},
+ debug = false}
+
+function make_layer_repo(param_repo)
+ local layer_repo = nerv.LayerRepo(
+ {
+ -- global transf
+ ["nerv.BiasLayer"] =
+ {
+ blayer1 = {{bias = "bias0"}, {dim_in = {440}, dim_out = {440}}}
+ },
+ ["nerv.WindowLayer"] =
+ {
+ wlayer1 = {{window = "window0"}, {dim_in = {440}, dim_out = {440}}}
+ },
+ -- biased linearity
+ ["nerv.AffineLayer"] =
+ {
+ affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"},
+ {dim_in = {440}, dim_out = {1024}}},
+ affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"},
+ {dim_in = {1024}, dim_out = {1024}}},
+ affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"},
+ {dim_in = {1024}, dim_out = {1024}}},
+ affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"},
+ {dim_in = {1024}, dim_out = {1024}}},
+ affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"},
+ {dim_in = {1024}, dim_out = {1024}}},
+ affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"},
+ {dim_in = {1024}, dim_out = {1024}}},
+ affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"},
+ {dim_in = {1024}, dim_out = {1959}}}
+ },
+ ["nerv.SigmoidLayer"] =
+ {
+ sigmoid0 = {{}, {dim_in = {1024}, dim_out = {1024}}},
+ sigmoid1 = {{}, {dim_in = {1024}, dim_out = {1024}}},
+ sigmoid2 = {{}, {dim_in = {1024}, dim_out = {1024}}},
+ sigmoid3 = {{}, {dim_in = {1024}, dim_out = {1024}}},
+ sigmoid4 = {{}, {dim_in = {1024}, dim_out = {1024}}},
+ sigmoid5 = {{}, {dim_in = {1024}, dim_out = {1024}}}
+ },
+ ["nerv.SoftmaxCELayer"] = -- softmax + ce criterion layer for finetune output
+ {
+ ce_crit = {{}, {dim_in = {1959, 1}, dim_out = {1}, compressed = true}}
+ },
+ ["nerv.SoftmaxLayer"] = -- softmax for decode output
+ {
+ softmax = {{}, {dim_in = {1959}, dim_out = {1959}}}
+ }
+ }, param_repo, gconf)
+
+ layer_repo:add_layers(
+ {
+ ["nerv.DAGLayer"] =
+ {
+ global_transf = {{}, {
+ dim_in = {440}, dim_out = {440},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "blayer1[1]",
+ ["blayer1[1]"] = "wlayer1[1]",
+ ["wlayer1[1]"] = "<output>[1]"
+ }
+ }},
+ main = {{}, {
+ dim_in = {440}, dim_out = {1959},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "affine0[1]",
+ ["affine0[1]"] = "sigmoid0[1]",
+ ["sigmoid0[1]"] = "affine1[1]",
+ ["affine1[1]"] = "sigmoid1[1]",
+ ["sigmoid1[1]"] = "affine2[1]",
+ ["affine2[1]"] = "sigmoid2[1]",
+ ["sigmoid2[1]"] = "affine3[1]",
+ ["affine3[1]"] = "sigmoid3[1]",
+ ["sigmoid3[1]"] = "affine4[1]",
+ ["affine4[1]"] = "sigmoid4[1]",
+ ["sigmoid4[1]"] = "affine5[1]",
+ ["affine5[1]"] = "sigmoid5[1]",
+ ["sigmoid5[1]"] = "affine6[1]",
+ ["affine6[1]"] = "<output>[1]"
+ }
+ }}
+ }
+ }, param_repo, gconf)
+
+ layer_repo:add_layers(
+ {
+ ["nerv.DAGLayer"] =
+ {
+ ce_output = {{}, {
+ dim_in = {440, 1}, dim_out = {1},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "main[1]",
+ ["main[1]"] = "ce_crit[1]",
+ ["<input>[2]"] = "ce_crit[2]",
+ ["ce_crit[1]"] = "<output>[1]"
+ }
+ }},
+ softmax_output = {{}, {
+ dim_in = {440}, dim_out = {1959},
+ sub_layers = layer_repo,
+ connections = {
+ ["<input>[1]"] = "main[1]",
+ ["main[1]"] = "softmax[1]",
+ ["softmax[1]"] = "<output>[1]"
+ }
+ }}
+ }
+ }, param_repo, gconf)
+
+ return layer_repo
+end
+
+function get_network(layer_repo)
+ return layer_repo:get_layer("ce_output")
+end
+
+function get_decode_network(layer_repo)
+ return layer_repo:get_layer("softmax_output")
+end
+
+function get_global_transf(layer_repo)
+ return layer_repo:get_layer("global_transf")
+end
+
+function make_readers(scp_file, layer_repo)
+ return {
+ {reader = nerv.KaldiReader(gconf,
+ {
+ id = "main_scp",
+ feature_rspecifier = scp_file,
+ conf_file = gconf.htk_conf,
+ frm_ext = gconf.frm_ext,
+ mlfs = {
+ phone_state = {
+ targets_rspecifier = "ark:/speechlab/tools/KALDI/kaldi-master/src/bin/ali-to-pdf " ..
+ "/speechlab/users/mfy43/timit/s5/exp/tri3_ali/final.mdl " ..
+ "\"ark:gunzip -c /speechlab/users/mfy43/timit/s5/exp/tri3_ali/ali.*.gz |\" " ..
+ "ark:- | " ..
+ "/speechlab/tools/KALDI/kaldi-master/src/bin/ali-to-post " ..
+ "ark:- ark:- |",
+ format = "map"
+ }
+ }
+ }),
+ data = {main_scp = 440, phone_state = 1}}
+ }
+end
+
+function make_decode_readers(scp_file, layer_repo)
+ return {
+ {reader = nerv.KaldiReader(gconf,
+ {
+ id = "main_scp",
+ feature_rspecifier = scp_file,
+ conf_file = gconf.htk_conf,
+ frm_ext = gconf.frm_ext,
+ mlfs = {},
+ need_key = true
+ }),
+ data = {main_scp = 440, phone_state = 1}}
+ }
+end
+
+function make_buffer(readers)
+ return nerv.SGDBuffer(gconf,
+ {
+ buffer_size = gconf.buffer_size,
+ randomize = gconf.randomize,
+ readers = readers,
+ use_gpu = true
+ })
+end
+
+function get_input_order()
+ return {{id = "main_scp", global_transf = true},
+ {id = "phone_state"}}
+end
+
+function get_decode_input_order()
+ return {{id = "main_scp", global_transf = true}}
+end
+
+function get_accuracy(layer_repo)
+ local ce_crit = layer_repo:get_layer("ce_crit")
+ return ce_crit.total_correct / ce_crit.total_frames * 100
+end
+
+function print_stat(layer_repo)
+ local ce_crit = layer_repo:get_layer("ce_crit")
+ nerv.info("*** training stat begin ***")
+ nerv.printf("cross entropy:\t\t%.8f\n", ce_crit.total_ce)
+ nerv.printf("correct:\t\t%d\n", ce_crit.total_correct)
+ nerv.printf("frames:\t\t\t%d\n", ce_crit.total_frames)
+ nerv.printf("err/frm:\t\t%.8f\n", ce_crit.total_ce / ce_crit.total_frames)
+ nerv.printf("accuracy:\t\t%.3f%%\n", get_accuracy(layer_repo))
+ nerv.info("*** training stat end ***")
+end