diff options
author | Determinant <[email protected]> | 2016-03-10 13:40:11 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2016-03-10 13:40:11 +0800 |
commit | a32195e3e2ae9ca0f0c7a82e73e6bddb64568c05 (patch) | |
tree | a19f21f8cbadecff7357f9a102f160f5fe699b65 /nerv/examples | |
parent | 4a6872601f05e9ecc059f83fb64a0a4887992b99 (diff) |
major change: clearer param binding semantics; permit rebinding; enable
resuming from previous training
Diffstat (limited to 'nerv/examples')
-rw-r--r-- | nerv/examples/asr_trainer.lua | 183 | ||||
-rw-r--r-- | nerv/examples/swb_baseline.lua | 77 | ||||
-rw-r--r-- | nerv/examples/swb_baseline2.lua | 77 | ||||
-rw-r--r-- | nerv/examples/swb_baseline_basic.lua | 162 | ||||
-rw-r--r-- | nerv/examples/timit_baseline2.lua | 64 |
5 files changed, 231 insertions, 332 deletions
diff --git a/nerv/examples/asr_trainer.lua b/nerv/examples/asr_trainer.lua index 5001e12..5bf28bd 100644 --- a/nerv/examples/asr_trainer.lua +++ b/nerv/examples/asr_trainer.lua @@ -1,19 +1,33 @@ require 'lfs' require 'pl' local function build_trainer(ifname) - local param_repo = nerv.ParamRepo() - param_repo:import(ifname, nil, gconf) - local layer_repo = make_layer_repo(param_repo) - local network = get_network(layer_repo) - local global_transf = get_global_transf(layer_repo) - local input_order = get_input_order() + local host_param_repo = nerv.ParamRepo() local mat_type + local src_loc_type + local train_loc_type + host_param_repo:import(ifname, nil, gconf) if gconf.use_cpu then mat_type = gconf.mmat_type + src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST + train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST else mat_type = gconf.cumat_type + src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST + train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_DEVICE end - local iterative_trainer = function (prefix, scp_file, bp) + local param_repo = host_param_repo:copy(train_loc_type) + local layer_repo = make_layer_repo(param_repo) + local network = get_network(layer_repo) + local global_transf = get_global_transf(layer_repo) + local input_order = get_input_order() + local iterative_trainer = function (prefix, scp_file, bp, rebind_param_repo) + -- rebind the params if necessary + if rebind_param_repo then + host_param_repo = rebind_param_repo + param_repo = host_param_repo:copy(train_loc_type) + layer_repo:rebind(param_repo) + rebind_param_repo = nil + end gconf.randomize = bp -- build buffer local buffer = make_buffer(make_readers(scp_file, layer_repo)) @@ -66,20 +80,38 @@ local function build_trainer(ifname) print_stat(layer_repo) mat_type.print_profile() mat_type.clear_profile() - if (not bp) and prefix ~= nil then - nerv.info("writing back...") - local fname = string.format("%s_cv%.3f.nerv", - prefix, get_accuracy(layer_repo)) - network:get_params():export(fname, nil) + local fname + if (not bp) then + host_param_repo = param_repo:copy(src_loc_type) + if prefix ~= nil then + nerv.info("writing back...") + fname = string.format("%s_cv%.3f.nerv", + prefix, get_accuracy(layer_repo)) + host_param_repo:export(fname, nil) + end end - return get_accuracy(layer_repo) + return get_accuracy(layer_repo), host_param_repo, fname end return iterative_trainer end -local function check_and_add_defaults(spec) - for k, v in pairs(spec) do - gconf[k] = opts[string.gsub(k, '_', '-')].val or gconf[k] or v +local function check_and_add_defaults(spec, opts) + local function get_opt_val(k) + return opts[string.gsub(k, '_', '-')].val + end + local opt_v = get_opt_val("resume_from") + if opt_v then + gconf = dofile(opt_v) + else + for k, v in pairs(spec) do + local opt_v = get_opt_val(k) + if opt_v ~= nil then + gconf[k] = opt_v + elseif gconf[k] ~= nil then + elseif v ~= nil then + gconf[k] = v + end + end end end @@ -112,6 +144,13 @@ local function print_gconf() end end +local function dump_gconf(fname) + local f = io.open(fname, "w") + f:write("return ") + f:write(table.tostring(gconf)) + f:close() +end + local trainer_defaults = { lrate = 0.8, batch_size = 256, @@ -121,22 +160,26 @@ local trainer_defaults = { start_halving_inc = 0.5, halving_factor = 0.6, end_halving_inc = 0.1, + cur_iter = 1, min_iter = 1, max_iter = 20, min_halving = 5, do_halving = false, - tr_scp = nil, - cv_scp = nil, - cumat_type = nerv.CuMatrixFloat, - mmat_type = nerv.MMatrixFloat, - debug = false + cumat_tname = "nerv.CuMatrixFloat", + mmat_tname = "nerv.MMatrixFloat", + debug = false, } local options = make_options(trainer_defaults) -table.insert(options, {"help", "h", "boolean", - default = false, desc = "show this help information"}) -table.insert(options, {"dir", nil, "string", - default = nil, desc = "specify the working directory"}) +local extra_opt_spec = { + {"tr-scp", nil, "string"}, + {"cv-scp", nil, "string"}, + {"resume-from", nil, "string"}, + {"help", "h", "boolean", default = false, desc = "show this help information"}, + {"dir", nil, "string", desc = "specify the working directory"}, +} + +table.extend(options, extra_opt_spec) arg, opts = nerv.parse_args(arg, options) @@ -155,14 +198,16 @@ Note: config key like aaa_bbbb_cc could be overriden by specifying ]]-- -check_and_add_defaults(trainer_defaults) +check_and_add_defaults(trainer_defaults, opts) +gconf.mmat_type = nerv.get_type(gconf.mmat_tname) +gconf.cumat_type = nerv.get_type(gconf.cumat_tname) +gconf.use_cpu = econf.use_cpu or false local pf0 = gconf.initialized_param -local trainer = build_trainer(pf0) -local accu_best = trainer(nil, gconf.cv_scp, false) local date_pattern = "%Y%m%d%H%M%S" local logfile_name = "log" local working_dir = opts["dir"].val or string.format("nerv_%s", os.date(date_pattern)) +local rebind_param_repo = nil print_gconf() if not lfs.mkdir(working_dir) then @@ -173,37 +218,55 @@ dir.copyfile(arg[1], working_dir) -- set logfile path nerv.set_logfile(path.join(working_dir, logfile_name)) path.chdir(working_dir) -nerv.info("initial cross validation: %.3f", accu_best) -for i = 1, gconf.max_iter do - nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate) - local accu_tr = trainer(nil, gconf.tr_scp, true) - nerv.info("[TR] training set %d: %.3f", i, accu_tr) - local accu_new = trainer( - string.format("%s_%s_iter_%d_lr%f_tr%.3f", - string.gsub( - (string.gsub(pf0[1], "(.*/)(.*)", "%2")), - "(.*)%..*", "%1"), - os.date(date_pattern), - i, gconf.lrate, - accu_tr), - gconf.cv_scp, false) - nerv.info("[CV] cross validation %d: %.3f", i, accu_new) - -- TODO: revert the weights - local accu_diff = accu_new - accu_best - if gconf.do_halving and - accu_diff < gconf.end_halving_inc and - i > gconf.min_iter then - break - end - if accu_diff < gconf.start_halving_inc and - i >= gconf.min_halving then - gconf.do_halving = true - end - if gconf.do_halving then - gconf.lrate = gconf.lrate * gconf.halving_factor - end - if accu_new > accu_best then - accu_best = accu_new - end + +-- start the training +local trainer = build_trainer(pf0) +local pr_prev +gconf.accu_best, pr_prev = trainer(nil, gconf.cv_scp, false) +nerv.info("initial cross validation: %.3f", gconf.accu_best) +for i = gconf.cur_iter, gconf.max_iter do + local stop = false + gconf.cur_iter = i + dump_gconf(string.format("iter_%d.meta", i)) + repeat -- trick to implement `continue` statement + nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate) + local accu_tr = trainer(nil, gconf.tr_scp, true, rebind_param_repo) + nerv.info("[TR] training set %d: %.3f", i, accu_tr) + local param_prefix = string.format("%s_%s_iter_%d_lr%f_tr%.3f", + string.gsub( + (string.gsub(pf0[1], "(.*/)(.*)", "%2")), + "(.*)%..*", "%1"), + os.date(date_pattern), + i, gconf.lrate, + accu_tr) + local accu_new, pr_new, param_fname = trainer(param_prefix, gconf.cv_scp, false) + nerv.info("[CV] cross validation %d: %.3f", i, accu_new) + local accu_prev = gconf.accu_best + if accu_new < gconf.accu_best then + nerv.info("rejecting the trained params, rollback to the previous one") + file.move(param_fname, param_fname .. ".rejected") + rebind_param_repo = pr_prev + break -- `continue` equivalent + else + nerv.info("accepting the trained params") + gconf.accu_best = accu_new + pr_prev = pr_new + gconf.initialized_param = {path.join(path.currentdir(), param_fname)} + end + if gconf.do_halving and + gconf.accu_best - accu_prev < gconf.end_halving_inc and + i > gconf.min_iter then + stop = true + break + end + if gconf.accu_best - accu_prev < gconf.start_halving_inc and + i >= gconf.min_halving then + gconf.do_halving = true + end + if gconf.do_halving then + gconf.lrate = gconf.lrate * gconf.halving_factor + end + until true + if stop then break end -- nerv.Matrix.print_profile() end diff --git a/nerv/examples/swb_baseline.lua b/nerv/examples/swb_baseline.lua index 4cb2389..0ce8468 100644 --- a/nerv/examples/swb_baseline.lua +++ b/nerv/examples/swb_baseline.lua @@ -7,8 +7,7 @@ gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9, cv_scp = "/slfs1/users/mfy43/swb_ivec/train_cv.scp", htk_conf = "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf", initialized_param = {"/slfs1/users/mfy43/swb_init.nerv", - "/slfs1/users/mfy43/swb_global_transf.nerv"}, - debug = false} + "/slfs1/users/mfy43/swb_global_transf.nerv"}} function make_layer_repo(param_repo) local layer_repo = nerv.LayerRepo( @@ -16,51 +15,51 @@ function make_layer_repo(param_repo) -- global transf ["nerv.BiasLayer"] = { - blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}}, - blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}} + blayer1 = {dim_in = {429}, dim_out = {429}, params = {bias = "bias1"}}, + blayer2 = {dim_in = {429}, dim_out = {429}, params = {bias = "bias2"}} }, ["nerv.WindowLayer"] = { - wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}}, - wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}} + wlayer1 = {dim_in = {429}, dim_out = {429}, params = {window = "window1"}}, + wlayer2 = {dim_in = {429}, dim_out = {429}, params = {window = "window2"}} }, -- biased linearity ["nerv.AffineLayer"] = { - affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, - {dim_in = {429}, dim_out = {2048}}}, - affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"}, - {dim_in = {2048}, dim_out = {3001}}} + affine0 = {dim_in = {429}, dim_out = {2048}, + params = {ltp = "affine0_ltp", bp = "affine0_bp"}}, + affine1 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine1_ltp", bp = "affine1_bp"}}, + affine2 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine2_ltp", bp = "affine2_bp"}}, + affine3 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine3_ltp", bp = "affine3_bp"}}, + affine4 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine4_ltp", bp = "affine4_bp"}}, + affine5 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine5_ltp", bp = "affine5_bp"}}, + affine6 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine6_ltp", bp = "affine6_bp"}}, + affine7 = {dim_in = {2048}, dim_out = {3001}, + params = {ltp = "affine7_ltp", bp = "affine7_bp"}} }, ["nerv.SigmoidLayer"] = { - sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}} + sigmoid0 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid1 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid2 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid3 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid4 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid5 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid6 = {dim_in = {2048}, dim_out = {2048}} }, ["nerv.SoftmaxCELayer"] = -- softmax + ce criterion layer for finetune output { - ce_crit = {{}, {dim_in = {3001, 1}, dim_out = {1}, compressed = true}} + ce_crit = {dim_in = {3001, 1}, dim_out = {1}, compressed = true} }, ["nerv.SoftmaxLayer"] = -- softmax for decode output { - softmax = {{}, {dim_in = {3001}, dim_out = {3001}}} + softmax = {dim_in = {3001}, dim_out = {3001}} } }, param_repo, gconf) @@ -68,7 +67,7 @@ function make_layer_repo(param_repo) { ["nerv.DAGLayer"] = { - global_transf = {{}, { + global_transf = { dim_in = {429}, dim_out = {429}, sub_layers = layer_repo, connections = { @@ -78,8 +77,8 @@ function make_layer_repo(param_repo) ["blayer2[1]"] = "wlayer2[1]", ["wlayer2[1]"] = "<output>[1]" } - }}, - main = {{}, { + }, + main = { dim_in = {429}, dim_out = {3001}, sub_layers = layer_repo, connections = { @@ -100,7 +99,7 @@ function make_layer_repo(param_repo) ["sigmoid6[1]"] = "affine7[1]", ["affine7[1]"] = "<output>[1]" } - }} + } } }, param_repo, gconf) @@ -108,7 +107,7 @@ function make_layer_repo(param_repo) { ["nerv.DAGLayer"] = { - ce_output = {{}, { + ce_output = { dim_in = {429, 1}, dim_out = {1}, sub_layers = layer_repo, connections = { @@ -117,8 +116,8 @@ function make_layer_repo(param_repo) ["<input>[2]"] = "ce_crit[2]", ["ce_crit[1]"] = "<output>[1]" } - }}, - softmax_output = {{}, { + }, + softmax_output = { dim_in = {429}, dim_out = {3001}, sub_layers = layer_repo, connections = { @@ -126,7 +125,7 @@ function make_layer_repo(param_repo) ["main[1]"] = "softmax[1]", ["softmax[1]"] = "<output>[1]" } - }} + } } }, param_repo, gconf) diff --git a/nerv/examples/swb_baseline2.lua b/nerv/examples/swb_baseline2.lua index b0b9689..8b5ebb1 100644 --- a/nerv/examples/swb_baseline2.lua +++ b/nerv/examples/swb_baseline2.lua @@ -7,8 +7,7 @@ gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9, cv_scp = "/speechlab/users/mfy43/swb50/train_cv.scp", htk_conf = "/speechlab/users/mfy43/swb50/plp_0_d_a.conf", initialized_param = {"/speechlab/users/mfy43/swb50/swb_init.nerv", - "/speechlab/users/mfy43/swb50/swb_global_transf.nerv"}, - debug = false} + "/speechlab/users/mfy43/swb50/swb_global_transf.nerv"}} function make_layer_repo(param_repo) local layer_repo = nerv.LayerRepo( @@ -16,51 +15,51 @@ function make_layer_repo(param_repo) -- global transf ["nerv.BiasLayer"] = { - blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}}, - blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}} + blayer1 = {dim_in = {429}, dim_out = {429}, params = {bias = "bias1"}}, + blayer2 = {dim_in = {429}, dim_out = {429}, params = {bias = "bias2"}} }, ["nerv.WindowLayer"] = { - wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}}, - wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}} + wlayer1 = {dim_in = {429}, dim_out = {429}, params = {window = "window1"}}, + wlayer2 = {dim_in = {429}, dim_out = {429}, params = {window = "window2"}} }, -- biased linearity ["nerv.AffineLayer"] = { - affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, - {dim_in = {429}, dim_out = {2048}}}, - affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"}, - {dim_in = {2048}, dim_out = {3001}}} + affine0 = {dim_in = {429}, dim_out = {2048}, + params = {ltp = "affine0_ltp", bp = "affine0_bp"}}, + affine1 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine1_ltp", bp = "affine1_bp"}}, + affine2 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine2_ltp", bp = "affine2_bp"}}, + affine3 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine3_ltp", bp = "affine3_bp"}}, + affine4 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine4_ltp", bp = "affine4_bp"}}, + affine5 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine5_ltp", bp = "affine5_bp"}}, + affine6 = {dim_in = {2048}, dim_out = {2048}, + params = {ltp = "affine6_ltp", bp = "affine6_bp"}}, + affine7 = {dim_in = {2048}, dim_out = {3001}, + params = {ltp = "affine7_ltp", bp = "affine7_bp"}} }, ["nerv.SigmoidLayer"] = { - sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}} + sigmoid0 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid1 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid2 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid3 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid4 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid5 = {dim_in = {2048}, dim_out = {2048}}, + sigmoid6 = {dim_in = {2048}, dim_out = {2048}} }, ["nerv.SoftmaxCELayer"] = -- softmax + ce criterion layer for finetune output { - ce_crit = {{}, {dim_in = {3001, 1}, dim_out = {1}, compressed = true}} + ce_crit = {dim_in = {3001, 1}, dim_out = {1}, compressed = true} }, ["nerv.SoftmaxLayer"] = -- softmax for decode output { - softmax = {{}, {dim_in = {3001}, dim_out = {3001}}} + softmax = {dim_in = {3001}, dim_out = {3001}} } }, param_repo, gconf) @@ -68,7 +67,7 @@ function make_layer_repo(param_repo) { ["nerv.DAGLayer"] = { - global_transf = {{}, { + global_transf = { dim_in = {429}, dim_out = {429}, sub_layers = layer_repo, connections = { @@ -78,8 +77,8 @@ function make_layer_repo(param_repo) ["blayer2[1]"] = "wlayer2[1]", ["wlayer2[1]"] = "<output>[1]" } - }}, - main = {{}, { + }, + main = { dim_in = {429}, dim_out = {3001}, sub_layers = layer_repo, connections = { @@ -100,7 +99,7 @@ function make_layer_repo(param_repo) ["sigmoid6[1]"] = "affine7[1]", ["affine7[1]"] = "<output>[1]" } - }} + } } }, param_repo, gconf) @@ -108,7 +107,7 @@ function make_layer_repo(param_repo) { ["nerv.DAGLayer"] = { - ce_output = {{}, { + ce_output = { dim_in = {429, 1}, dim_out = {1}, sub_layers = layer_repo, connections = { @@ -117,8 +116,8 @@ function make_layer_repo(param_repo) ["<input>[2]"] = "ce_crit[2]", ["ce_crit[1]"] = "<output>[1]" } - }}, - softmax_output = {{}, { + }, + softmax_output = { dim_in = {429}, dim_out = {3001}, sub_layers = layer_repo, connections = { @@ -126,7 +125,7 @@ function make_layer_repo(param_repo) ["main[1]"] = "softmax[1]", ["softmax[1]"] = "<output>[1]" } - }} + } } }, param_repo, gconf) diff --git a/nerv/examples/swb_baseline_basic.lua b/nerv/examples/swb_baseline_basic.lua deleted file mode 100644 index 71f04a3..0000000 --- a/nerv/examples/swb_baseline_basic.lua +++ /dev/null @@ -1,162 +0,0 @@ -require 'htk_io' -gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9, - cumat_type = nerv.CuMatrixFloat, - mmat_type = nerv.MMatrixFloat, - frm_ext = 5, - frm_trim = 5, - tr_scp = "/slfs1/users/mfy43/swb_ivec/train_bp.scp", - cv_scp = "/slfs1/users/mfy43/swb_ivec/train_cv.scp", - htk_conf = "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf", - initialized_param = {"/slfs1/users/mfy43/swb_init.nerv", - "/slfs1/users/mfy43/swb_global_transf.nerv"}, - debug = false} - -function make_layer_repo(param_repo) - local layer_repo = nerv.LayerRepo( - { - -- global transf - ["nerv.BiasLayer"] = - { - blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}}, - blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}} - }, - ["nerv.WindowLayer"] = - { - wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}}, - wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}} - }, - -- biased linearity - ["nerv.AffineLayer"] = - { - affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, - {dim_in = {429}, dim_out = {2048}}}, - affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, - {dim_in = {2048}, dim_out = {2048}}}, - affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"}, - {dim_in = {2048}, dim_out = {3001}}} - }, - ["nerv.SigmoidLayer"] = - { - sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}}, - sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}} - }, - ["nerv.SoftmaxCELayer"] = - { - ce_crit = {{}, {dim_in = {3001, 1}, dim_out = {1}, compressed = true}} - } - }, param_repo, gconf) - - layer_repo:add_layers( - { - ["nerv.DAGLayer"] = - { - global_transf = {{}, { - dim_in = {429}, dim_out = {429}, - sub_layers = layer_repo, - connections = { - ["<input>[1]"] = "blayer1[1]", - ["blayer1[1]"] = "wlayer1[1]", - ["wlayer1[1]"] = "blayer2[1]", - ["blayer2[1]"] = "wlayer2[1]", - ["wlayer2[1]"] = "<output>[1]" - } - }}, - main = {{}, { - dim_in = {429, 1}, dim_out = {1}, - sub_layers = layer_repo, - connections = { - ["<input>[1]"] = "affine0[1]", - ["affine0[1]"] = "sigmoid0[1]", - ["sigmoid0[1]"] = "affine1[1]", - ["affine1[1]"] = "sigmoid1[1]", - ["sigmoid1[1]"] = "affine2[1]", - ["affine2[1]"] = "sigmoid2[1]", - ["sigmoid2[1]"] = "affine3[1]", - ["affine3[1]"] = "sigmoid3[1]", - ["sigmoid3[1]"] = "affine4[1]", - ["affine4[1]"] = "sigmoid4[1]", - ["sigmoid4[1]"] = "affine5[1]", - ["affine5[1]"] = "sigmoid5[1]", - ["sigmoid5[1]"] = "affine6[1]", - ["affine6[1]"] = "sigmoid6[1]", - ["sigmoid6[1]"] = "affine7[1]", - ["affine7[1]"] = "ce_crit[1]", - ["<input>[2]"] = "ce_crit[2]", - ["ce_crit[1]"] = "<output>[1]" - } - }} - } - }, param_repo, gconf) - return layer_repo -end - -function get_network(layer_repo) - return layer_repo:get_layer("main") -end - -function make_readers(scp_file, layer_repo) - return { - {reader = nerv.TNetReader(gconf, - { - id = "main_scp", - scp_file = scp_file, - conf_file = gconf.htk_conf, - frm_ext = gconf.frm_ext, - mlfs = { - phone_state = { - file = "/slfs1/users/mfy43/swb_ivec/ref.mlf", - format = "map", - format_arg = "/slfs1/users/mfy43/swb_ivec/dict", - dir = "*/", - ext = "lab" - } - } - }), - data = {main_scp = 429, phone_state = 1}} - } -end - -function make_buffer(readers) - return nerv.SGDBuffer(gconf, - { - buffer_size = gconf.buffer_size, - randomize = gconf.randomize, - readers = readers - }) -end - -function get_input_order() - return {{id = "main_scp", global_transf = true}, - {id = "phone_state"}} -end - -function get_accuracy(layer_repo) - local ce_crit = layer_repo:get_layer("ce_crit") - return ce_crit.total_correct / ce_crit.total_frames * 100 -end - -function print_stat(layer_repo) - local ce_crit = layer_repo:get_layer("ce_crit") - nerv.info("*** training stat begin ***") - nerv.printf("cross entropy:\t\t%.8f\n", ce_crit.total_ce) - nerv.printf("correct:\t\t%d\n", ce_crit.total_correct) - nerv.printf("frames:\t\t\t%d\n", ce_crit.total_frames) - nerv.printf("err/frm:\t\t%.8f\n", ce_crit.total_ce / ce_crit.total_frames) - nerv.printf("accuracy:\t\t%.3f%%\n", get_accuracy(layer_repo)) - nerv.info("*** training stat end ***") -end diff --git a/nerv/examples/timit_baseline2.lua b/nerv/examples/timit_baseline2.lua index 103d89d..2d144b5 100644 --- a/nerv/examples/timit_baseline2.lua +++ b/nerv/examples/timit_baseline2.lua @@ -16,46 +16,46 @@ function make_layer_repo(param_repo) -- global transf ["nerv.BiasLayer"] = { - blayer1 = {{bias = "bias0"}, {dim_in = {440}, dim_out = {440}}} + blayer1 = {dim_in = {440}, dim_out = {440}, params = {bias = "bias0"}} }, ["nerv.WindowLayer"] = { - wlayer1 = {{window = "window0"}, {dim_in = {440}, dim_out = {440}}} + wlayer1 = {dim_in = {440}, dim_out = {440}, params = {window = "window0"}} }, -- biased linearity ["nerv.AffineLayer"] = { - affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, - {dim_in = {440}, dim_out = {1024}}}, - affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, - {dim_in = {1024}, dim_out = {1024}}}, - affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, - {dim_in = {1024}, dim_out = {1024}}}, - affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, - {dim_in = {1024}, dim_out = {1024}}}, - affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, - {dim_in = {1024}, dim_out = {1024}}}, - affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, - {dim_in = {1024}, dim_out = {1024}}}, - affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, - {dim_in = {1024}, dim_out = {1959}}} + affine0 = {dim_in = {440}, dim_out = {1024}, + params = {ltp = "affine0_ltp", bp = "affine0_bp"}}, + affine1 = {dim_in = {1024}, dim_out = {1024}, + params = {ltp = "affine1_ltp", bp = "affine1_bp"}}, + affine2 = {dim_in = {1024}, dim_out = {1024}, + params = {ltp = "affine2_ltp", bp = "affine2_bp"}}, + affine3 = {dim_in = {1024}, dim_out = {1024}, + params = {ltp = "affine3_ltp", bp = "affine3_bp"}}, + affine4 = {dim_in = {1024}, dim_out = {1024}, + params = {ltp = "affine4_ltp", bp = "affine4_bp"}}, + affine5 = {dim_in = {1024}, dim_out = {1024}, + params = {ltp = "affine5_ltp", bp = "affine5_bp"}}, + affine6 = {dim_in = {1024}, dim_out = {1959}, + params = {ltp = "affine6_ltp", bp = "affine6_bp"}} }, ["nerv.SigmoidLayer"] = { - sigmoid0 = {{}, {dim_in = {1024}, dim_out = {1024}}}, - sigmoid1 = {{}, {dim_in = {1024}, dim_out = {1024}}}, - sigmoid2 = {{}, {dim_in = {1024}, dim_out = {1024}}}, - sigmoid3 = {{}, {dim_in = {1024}, dim_out = {1024}}}, - sigmoid4 = {{}, {dim_in = {1024}, dim_out = {1024}}}, - sigmoid5 = {{}, {dim_in = {1024}, dim_out = {1024}}} + sigmoid0 = {dim_in = {1024}, dim_out = {1024}}, + sigmoid1 = {dim_in = {1024}, dim_out = {1024}}, + sigmoid2 = {dim_in = {1024}, dim_out = {1024}}, + sigmoid3 = {dim_in = {1024}, dim_out = {1024}}, + sigmoid4 = {dim_in = {1024}, dim_out = {1024}}, + sigmoid5 = {dim_in = {1024}, dim_out = {1024}} }, ["nerv.SoftmaxCELayer"] = -- softmax + ce criterion layer for finetune output { - ce_crit = {{}, {dim_in = {1959, 1}, dim_out = {1}, compressed = true}} + ce_crit = {dim_in = {1959, 1}, dim_out = {1}, compressed = true} }, ["nerv.SoftmaxLayer"] = -- softmax for decode output { - softmax = {{}, {dim_in = {1959}, dim_out = {1959}}} + softmax = {dim_in = {1959}, dim_out = {1959}} } }, param_repo, gconf) @@ -63,7 +63,7 @@ function make_layer_repo(param_repo) { ["nerv.DAGLayer"] = { - global_transf = {{}, { + global_transf = { dim_in = {440}, dim_out = {440}, sub_layers = layer_repo, connections = { @@ -71,8 +71,8 @@ function make_layer_repo(param_repo) ["blayer1[1]"] = "wlayer1[1]", ["wlayer1[1]"] = "<output>[1]" } - }}, - main = {{}, { + }, + main = { dim_in = {440}, dim_out = {1959}, sub_layers = layer_repo, connections = { @@ -91,7 +91,7 @@ function make_layer_repo(param_repo) ["sigmoid5[1]"] = "affine6[1]", ["affine6[1]"] = "<output>[1]" } - }} + } } }, param_repo, gconf) @@ -99,7 +99,7 @@ function make_layer_repo(param_repo) { ["nerv.DAGLayer"] = { - ce_output = {{}, { + ce_output = { dim_in = {440, 1}, dim_out = {1}, sub_layers = layer_repo, connections = { @@ -108,8 +108,8 @@ function make_layer_repo(param_repo) ["<input>[2]"] = "ce_crit[2]", ["ce_crit[1]"] = "<output>[1]" } - }}, - softmax_output = {{}, { + }, + softmax_output = { dim_in = {440}, dim_out = {1959}, sub_layers = layer_repo, connections = { @@ -117,7 +117,7 @@ function make_layer_repo(param_repo) ["main[1]"] = "softmax[1]", ["softmax[1]"] = "<output>[1]" } - }} + } } }, param_repo, gconf) |