aboutsummaryrefslogtreecommitdiff
path: root/lua/config.lua
diff options
context:
space:
mode:
authorQi Liu <[email protected]>2016-03-09 11:58:13 +0800
committerQi Liu <[email protected]>2016-03-09 11:58:13 +0800
commit05fcde5bf0caa1ceb70fef02fc88eda6f00c5ed5 (patch)
treea3bfb245d3f106525ec2ff4f987848fcd3f56217 /lua/config.lua
parent4e56b863203ab6919192efe973ba9f8ee0d5ac65 (diff)
add recipe
Diffstat (limited to 'lua/config.lua')
-rw-r--r--lua/config.lua67
1 files changed, 67 insertions, 0 deletions
diff --git a/lua/config.lua b/lua/config.lua
new file mode 100644
index 0000000..9d73b64
--- /dev/null
+++ b/lua/config.lua
@@ -0,0 +1,67 @@
+function get_global_conf()
+ local global_conf = {
+ lrate = 0.15,
+ wcost = 1e-5,
+ momentum = 0,
+ clip = 5,
+ cumat_type = nerv.CuMatrixFloat,
+ mmat_type = nerv.MMatrixFloat,
+ vocab_size = 10000,
+ nn_act_default = 0,
+ hidden_size = 300,
+ layer_num = 1,
+ chunk_size = 15,
+ batch_size = 20,
+ max_iter = 1,
+ param_random = function() return (math.random() / 5 - 0.1) end,
+ dropout = 0.5,
+ timer = nerv.Timer(),
+ pr = nerv.ParamRepo(),
+ }
+ return global_conf
+end
+
+function get_layers(global_conf)
+ local pr = global_conf.pr
+ local layers = {
+ ['nerv.LSTMLayer'] = {},
+ ['nerv.DropoutLayer'] = {},
+ ['nerv.SelectLinearLayer'] = {
+ ['select'] = {dim_in = {1}, dim_out = {global_conf.hidden_size}, vocab = global_conf.vocab_size, pr = pr},
+ },
+ ['nerv.CombinerLayer'] = {},
+ ['nerv.AffineLayer'] = {
+ output = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.vocab_size}, pr = pr}
+ },
+ ['nerv.SoftmaxCELayer'] = {
+ softmax = {dim_in = {global_conf.vocab_size, global_conf.vocab_size}, dim_out = {1}},
+ },
+ }
+ for i = 1, global_conf.layer_num do
+ layers['nerv.LSTMLayer']['lstm' .. i] = {dim_in = {global_conf.hidden_size, global_conf.hidden_size, global_conf.hidden_size}, dim_out = {global_conf.hidden_size, global_conf.hidden_size}, pr = pr}
+ layers['nerv.DropoutLayer']['dropout' .. i] = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.hidden_size}}
+ layers['nerv.CombinerLayer']['dup' .. i] = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.hidden_size, global_conf.hidden_size}, lambda = {1}}
+ end
+ return layers
+end
+
+function get_connections(global_conf)
+ local connections = {
+ {'<input>[1]', 'select[1]', 0},
+ {'select[1]', 'lstm1[1]', 0},
+ {'dropout' .. global_conf.layer_num .. '[1]', 'output[1]', 0},
+ {'output[1]', 'softmax[1]', 0},
+ {'<input>[2]', 'softmax[2]', 0},
+ {'softmax[1]', '<output>[1]', 0},
+ }
+ for i = 1, global_conf.layer_num do
+ table.insert(connections, {'lstm' .. i .. '[1]', 'dup' .. i .. '[1]', 0})
+ table.insert(connections, {'lstm' .. i .. '[2]', 'lstm' .. i .. '[3]', 1})
+ table.insert(connections, {'dup' .. i .. '[1]', 'lstm' .. i .. '[2]', 1})
+ table.insert(connections, {'dup' .. i .. '[2]', 'dropout' .. i .. '[1]', 0})
+ if i > 1 then
+ table.insert(connections, {'dropout' .. (i - 1) .. '[1]', 'lstm' .. i .. '[1]', 0})
+ end
+ end
+ return connections
+end