diff options
author | Determinant <[email protected]> | 2015-06-22 19:01:29 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-06-22 19:01:29 +0800 |
commit | 2497fd9e7a0fae5ee4887890d7a312e0e08a93b8 (patch) | |
tree | 382f97575bd2df9ee6abb1662b11b279fc22d72b /layer/affine.lua | |
parent | 196e9b48a3541caccdffc5743001cced70667091 (diff) |
major change: use luarocks to manage project
Diffstat (limited to 'layer/affine.lua')
-rw-r--r-- | layer/affine.lua | 91 |
1 files changed, 0 insertions, 91 deletions
diff --git a/layer/affine.lua b/layer/affine.lua deleted file mode 100644 index 00cbcfb..0000000 --- a/layer/affine.lua +++ /dev/null @@ -1,91 +0,0 @@ -local MatrixParam = nerv.class('nerv.MatrixParam', 'nerv.Param') -local LinearTransParam = nerv.class('nerv.LinearTransParam', 'nerv.MatrixParam') -local BiasParam = nerv.class('nerv.BiasParam', 'nerv.MatrixParam') -local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer') - -function MatrixParam:read(handle) - self.trans = self.gconf.cumat_type.new_from_host( - nerv.MMatrixFloat.load(handle)) -end - -function MatrixParam:write(handle) - self.trans:new_to_host():save(handle) -end - -function MatrixParam:train_init() - self.correction = self.trans:create() - self.correction:fill(0) -end - -function MatrixParam:update(gradient) - local gconf = self.gconf - self.correction:add(self.correction, gradient, gconf.momentum, 1.0) - -- momentum gain - local mmt_gain = 1.0 / (1.0 - gconf.momentum); - local n = self.gconf.batch_size * mmt_gain - -- perform update - self.trans:add(self.trans, self.correction, 1.0, -gconf.lrate / n) -end - -function LinearTransParam:update(gradient) - MatrixParam.update(self, gradient) - local gconf = self.gconf - -- weight decay - self.trans:add(self.trans, self.trans, 1.0, -gconf.lrate * gconf.wcost) -end - -function AffineLayer:__init(id, global_conf, layer_conf) - self.id = id - self.ltp = layer_conf.ltp - self.bp = layer_conf.bp - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - self:check_dim_len(1, 1) -- exactly one input and one output - self.direct_update = layer_conf.direct_update -end - -function AffineLayer:init(batch_size) - if self.ltp.trans:ncol() ~= self.bp.trans:ncol() then - nerv.error("mismatching dimensions of linear transform and bias paramter") - end - if self.dim_in[1] ~= self.ltp.trans:nrow() then - nerv.error("mismatching dimensions of linear transform parameter and input") - end - if self.dim_out[1] ~= self.ltp.trans:ncol() then - nerv.error("mismatching dimensions of linear transform parameter and output") - end - self.ltp_grad = self.ltp.trans:create() - self.ltp:train_init() - self.bp:train_init() -end - -function AffineLayer:update(bp_err, input, output) - if self.direct_update then - self.ltp.correction:mul(input[1], bp_err[1], 1.0, gconf.momentum, 'T', 'N') - -- momentum gain - local mmt_gain = 1.0 / (1.0 - gconf.momentum); - local n = self.gconf.batch_size * mmt_gain - -- perform update - self.ltp.trans:add(self.ltp.trans, self.ltp.correction, 1.0, -gconf.lrate / n) - else - self.ltp_grad:mul(input[1], bp_err[1], 1.0, 0.0, 'T', 'N') - self.ltp:update(self.ltp_grad) - end - self.bp:update(bp_err[1]:colsum()) -end - -function AffineLayer:propagate(input, output) - -- apply linear transform - output[1]:mul(input[1], self.ltp.trans, 1.0, 0.0, 'N', 'N') - -- add bias - output[1]:add_row(self.bp.trans, 1.0) -end - -function AffineLayer:back_propagate(bp_err, next_bp_err, input, output) - next_bp_err[1]:mul(bp_err[1], self.ltp.trans, 1.0, 0.0, 'N', 'T') -end - -function AffineLayer:get_params() - return nerv.ParamRepo({self.ltp, self.bp}) -end |