diff options
author | Determinant <[email protected]> | 2015-06-02 23:07:15 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-06-02 23:07:15 +0800 |
commit | 08a52c03a77ce13ae4f6a4deb06ab0ae274d399a (patch) | |
tree | 1cf0ac8c7d05a83c9a7246d6b6c56eb113124385 /examples | |
parent | 74d9e9e7371c80394698fb9805cbf0cbde67a8f3 (diff) |
fix a bug: input[1] should be input[2] (since Lua arrays are 1-based)
Diffstat (limited to 'examples')
-rw-r--r-- | examples/test_nn_lib.lua | 60 |
1 files changed, 47 insertions, 13 deletions
diff --git a/examples/test_nn_lib.lua b/examples/test_nn_lib.lua index fd7167a..ec338fe 100644 --- a/examples/test_nn_lib.lua +++ b/examples/test_nn_lib.lua @@ -1,25 +1,46 @@ -require 'layer.affine' -require 'layer.sigmoid' -require 'layer.softmax_ce' +-- require 'layer.affine' +-- require 'layer.sigmoid' +-- require 'layer.softmax_ce' gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9, mat_type = nerv.CuMatrixFloat, batch_size = 10} -param_repo = nerv.ParamRepo({"affine.param"}) +param_repo = nerv.ParamRepo({"converted.nerv"}) sublayer_repo = nerv.LayerRepo( { ["nerv.AffineLayer"] = { - affine1 = {{ltp = "a", bp = "b"}, {dim_in = {429}, dim_out = {2048}}} + affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"}, + {dim_in = {429}, dim_out = {2048}}}, + affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"}, + {dim_in = {2048}, dim_out = {2048}}}, + affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"}, + {dim_in = {2048}, dim_out = {3001}}} }, ["nerv.SigmoidLayer"] = { - sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}} + sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}}, + sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}} }, ["nerv.SoftmaxCELayer"] = { - softmax_ce1 = {{}, {dim_in = {2048, 2048}, dim_out = {}}} + softmax_ce0 = {{}, {dim_in = {3001, 3001}, dim_out = {}}} } }, param_repo, gconf) @@ -28,20 +49,33 @@ layer_repo = nerv.LayerRepo( ["nerv.DAGLayer"] = { main = {{}, { - dim_in = {429, 2048}, dim_out = {}, + dim_in = {429, 3001}, dim_out = {}, sub_layers = sublayer_repo, connections = { - ["<input>[1]"] = "affine1[1]", + ["<input>[1]"] = "affine0[1]", + ["affine0[1]"] = "sigmoid0[1]", + ["sigmoid0[1]"] = "affine1[1]", ["affine1[1]"] = "sigmoid1[1]", - ["sigmoid1[1]"] = "softmax_ce1[1]", - ["<input>[2]"] = "softmax_ce1[2]" + ["sigmoid1[1]"] = "affine2[1]", + ["affine2[1]"] = "sigmoid2[1]", + ["sigmoid2[1]"] = "affine3[1]", + ["affine3[1]"] = "sigmoid3[1]", + ["sigmoid3[1]"] = "affine4[1]", + ["affine4[1]"] = "sigmoid4[1]", + ["sigmoid4[1]"] = "affine5[1]", + ["affine5[1]"] = "sigmoid5[1]", + ["sigmoid5[1]"] = "affine6[1]", + ["affine6[1]"] = "sigmoid6[1]", + ["sigmoid6[1]"] = "affine7[1]", + ["affine7[1]"] = "softmax_ce0[1]", + ["<input>[2]"] = "softmax_ce0[2]" } }} } }, param_repo, gconf) df = nerv.ChunkFile("input.param", "r") -label = nerv.CuMatrixFloat(10, 2048) +label = nerv.CuMatrixFloat(10, 3001) label:fill(0) for i = 0, 9 do label[i][i] = 1.0 @@ -51,7 +85,7 @@ input = {df:read_chunk("input", gconf).trans, label} output = {} err_input = {} err_output = {input[1]:create()} -sm = sublayer_repo:get_layer("softmax_ce1") +sm = sublayer_repo:get_layer("softmax_ce0") main = layer_repo:get_layer("main") main:init() for i = 0, 3 do |