diff options
author | Determinant <[email protected]> | 2015-06-22 19:01:29 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-06-22 19:01:29 +0800 |
commit | 2497fd9e7a0fae5ee4887890d7a312e0e08a93b8 (patch) | |
tree | 382f97575bd2df9ee6abb1662b11b279fc22d72b /doc/nerv_matrix.md | |
parent | 196e9b48a3541caccdffc5743001cced70667091 (diff) |
major change: use luarocks to manage project
Diffstat (limited to 'doc/nerv_matrix.md')
-rw-r--r-- | doc/nerv_matrix.md | 165 |
1 files changed, 0 insertions, 165 deletions
diff --git a/doc/nerv_matrix.md b/doc/nerv_matrix.md deleted file mode 100644 index 22971d2..0000000 --- a/doc/nerv_matrix.md +++ /dev/null @@ -1,165 +0,0 @@ -#The Nerv Matrix Package# -Part of the [Nerv](../README.md) toolkit. - -##Description## -###Underlying structure### -In the begining is could be useful to know something about the underlying structure of a __Nerv__ matrix. Please keep in mind that matrice in __Nerv__ is row-major. -Every matrix object is a encapsulation of a C struct that describes the attributes of this matrix. -``` -typedef struct Matrix { - size_t stride; /* size of a row */ - long ncol, nrow, nmax; /* dimension of the matrix, nmax is simply nrow * ncol */ - union { - float *f; - double *d; - long *i; - } data; /* pointer to actual storage */ - long *data_ref; -} Matrix; -``` -It is worth mentioning that that `data_ref` is a counter which counts the number of references to its memory space, mind that it will also be increased when a row of the matrix is referenced(`col = m[2]`). A __Nerv__ matrix will deallocate its space when this counter is decreased to zero. -Also note that all assigning operation in __Nerv__ is reference copy, you can use `copy_tod` or `copy_toh` method to copy value. Also, row assigning operations like `m1[2]=m2[3]` is forbidden in __Nerv__. - -###Class hierarchy### -The class hierarchy of the matrix classes can be clearly observed in `matrix/init.c`. -First there is a abstract base class __Nerv.Matrix__, which is inherited by __Nerv.CuMatrix__ and __Nerv.MMatrix__(also abstract). -Finally, there is __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, inheriting __Nerv.CuMatrix__, and __Nerv.MMatrixFloat__, __Nerv.MMatrixDouble__, __Nerv.MMatrixInt__ , inheriting __Nerv.MMatrix__. - -##Methods## -Mind that usually a matrix object can only do calculation with matrix of its own type(a __Nerv.CuMatrixFloat__ matrix can only do add operation with a __Nerv.CuMatrixFloat__). -In the methods description below, __Matrix__ could be __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, __Nerv.MMatrixFloat__ or __Nerv.MMatrixDouble__. __Element_type__ could be `float` or `double`, respectively. -* __Matrix = Matrix(int nrow, int ncol)__ -Returns a __Matrix__ object of `nrow` rows and `ncol` columns. -* __Element_type = Matrix.get_elem(Matrix self, int index)__ -Returns the element value at the specific index(treating the matrix as a vector). The index should be less than `nmax` of the matrix. -* __void Matrix.set_elem(Matrix self, int index, Element_type value)__ -Set the value at `index` to be `value`. -* __int Matrix.ncol(Matrix self)__ -Get `ncol`, the number of columns. -* __int Matrix.nrow(Matrix self)__ -Get `nrow`, the number of rows. -* __int Matrix.get_dataref_value(Matrix self)__ -Returns the value(not a pointer) of space the `data_ref` pointer pointed to. This function is mainly for debugging. -* __Matrix/Element\_type, boolean Matrix.\_\_index\_\_(Matrix self, int index)__ -If the matrix has more than one row, will return the row at `index` as a __Matrix__ . Otherwise it will return the value at `index`. -* __void Matrix.\_\_newindex\_\_(Matrix self, int index, Element_type value)__ -Set the element at `index` to be `value`. ---- -* __Matrix Matrix.create(Matrix a)__ -Return a new __Matrix__ of `a`'s size(of the same number of rows and columns). -* __Matrix Matrix.colsum(Matrix self)__ -Return a new __Matrix__ of size (1,`self.ncol`), which stores the sum of all columns of __Matrix__ `self`. -* __Matrix Matrix.rowsum(Matrix self)__ -Return a new __Matrix__ of size (`self.nrow`,1), which stores the sum of all rows of __Matrix__ `self`. -* __Matrix Matrix.rowmax(Matrix self)__ -Return a new __Matrix__ of size (`self.nrow`,1), which stores the max value of all rows of __Matrix__ `self`. -* __Matrix Matrix.trans(Matrix self)__ -Return a new __Matrix__ of size (`self.ncol`,`self.nrow`), which stores the transpose of __Matrix__ `self`. -* __void Matrix.copy_fromh(Matrix self, MMatrix a)__ -Copy the content of a __MMatrix__ `a` to __Matrix__ `self`, they should be of the same size. -* __void Matrix.copy_fromd(Matrix self, CuMatrix a)__ -Copy the content of a __CuMatrix__ `a` to __Matrix__ `self`, they should be of the same size. -* __void Matrix.copy_toh(Matrix self, MMatrix a)__ -Copy the content of the __Matrix__ `self` to a __MMatrix__ `a`. -* __void Matrix.copy_tod(Matrix self, CuMatrix a)__ -Copy the content of the __Matrix__ `self` to a __CuMatrix__ `a`. -* __void Matrix.add(Matrix self, Matrix ma, Matrix mb, Element_type alpha, Element_type beta)__ -It sets the content of __Matrix__ `self` to be `alpha * ma + beta * mb`.__Matrix__ `ma,mb,self` should be of the same size. -* __void Matrix.mul(Matrix self, Matrix ma, Matrix mb, Element_type alpha, Element_type beta, [string ta, string tb])__ -It sets the content of __Matrix__ `self` to be `beta * self + alpha * ma * mb`. `ta` and `tb` is optional, if `ta` is 'T', then `ma` will be transposed, also if `tb` is 'T', `mb` will be transposed. -* __void Matrix.add_row(Matrix self, Matrix va, Element_type beta)__ -Add `beta * va` to every row of __Matrix__ `self`. -* __void Matrix.fill(Matrix self, Element_type value)__ -Fill the content of __Matrix__ `self` to be `value`. -* __void Matrix.sigmoid(Matrix self, Matrix ma)__ -Set the element of __Matrix__ `self` to be elementwise-sigmoid of `ma`. -* __void Matrix.sigmoid_grad(Matrix self, Matrix err, Matrix output)__ -Set the element of __Matrix__ `self`, to be `self[i][j]=err[i][j]*output[i][j]*(1-output[i][j])`. This function is used to propagate sigmoid layer error. -* __void Matrix.softmax(Matrix self, Matrix a)__ -Calculate a row-by-row softmax of __Matrix__ `a` and save the result in `self`. -* __void Matrix.mul_elem(Matrix self, Matrix ma, Matrix mb)__ -Calculate element-wise multiplication of __Matrix__ `ma` and `mb`, store the result in `self`. -* __void Matrix.log_elem(Matrix self, Matrix ma)__ -Calculate element-wise log of __Matrix__ `ma`, store the result in `self`. -* __void Matrix.copy_rows_fromh_by_idx(Matrix self, MMatrix ma, MMatrixInt idx)__ -`idx` should be a row vector. This function copy the rows of `ma` to `self` according to `idx`, in other words, it assigns `ma[idx[i]]` to `self[i]`. -* __void Matrix.expand_frm(Matrix self, Matrix a, int context)__ -Treating each row of `a` as speech feature, and do a feature expansion. The `self` should of size `(a.nrow, a.ncol * (context * 2 + 1))`. `self[i]` will be `(a[i-context] a[i-context+1] ... a[i] a[i+1] a[i+context])`. `a[0]` and `a[nrow]` will be copied to extend the index range. -* __void Matrix.rearrange_frm(Matrix self, Matrix a, int step)__ -Rearrange `a` according to its feature dimension. The `step` is the length of context. So, `self[i][j]` will be assigned `a[i][j / step + (j % step) * (a.ncol / step)]`. `a` and `self` should be of the same size and `step` should be divisible by `a.ncol`. -* __void Matrix.scale_row(Matrix self, Matrix scale)__ -Scale each column of `self` according to a vector `scale`. `scale` should be of size `1 * self.ncol`. -* __Matrix Matrix.\_\_add\_\_(Matrix ma, Matrix mb)__ -Returns a new __Matrix__ which stores the result of `ma+mb`. -* __Matrix Matrix.\_\_sub\_\_(Matrix ma, Matrix mb)__ -Returns a new __Matrix__ which stores the result of `ma-mb`. -* __Matrix Matrix.\_\_mul\_\_(Matrix ma, Matrix mb)__ -Returns a new __Matrix__ which stores the result of `ma*mb`. -* __CuMatrix CuMatrix.new_from_host(MMatrix m)__ -Return a new __CuMatrix__ which is a copy of `m`. -* __MMatrix CuMatrix.new_to_host(CuMatrix self)__ -Return a new __MMatrix__ which is a copy of `self`. -* __string Matrix.\_\_tostring\_\_(Matrix self)__ -Returns a string containing values of __Matrix__ `self`. ---- -* __MMatrix MMatrix.load(ChunkData chunk)__ -Return a new __MMatrix__ loaded from the file position in `chunk`. -* __void MMatrix.save(MMatrix self, ChunkFileHandle chunk)__ -Write `self` to the file position in `chunk`. -* __void MMatrix.copy_from(MMatrix ma, MMatrix mb,[int b_bgein, int b_end, int a_begin])__ -Copy a part of `mb`(rows of index `[b_begin..b_end)`) to `ma` beginning at row index `a_begin`. If not specified, `b_begin` will be `0`, `b_end` will be `b.nrow`, `a_begin` will be `0`. - -##Examples## -* Use `get_dataref_value` to test __Nerv__'s matrix space allocation. -``` -m = 10 -n = 10 -fm = nerv.MMatrixFloat(m, n) -dm = nerv.MMatrixDouble(m, n) -for i = 0, m - 1 do - for j = 0, n - 1 do - t = i / (j + 1) - fm[i][j] = t - dm[i][j] = t - end -end -print("test fm:get_dataref_value:", fm:get_dataref_value()) -print("forced a garbade collect") -collectgarbage("collect") -print("test fm:get_dataref_value:", fm:get_dataref_value()) -print(fm) -print(dm) -``` -* Test some __Matrix__ calculations. -``` -m = 4 -n = 4 -fm = nerv.CuMatrixFloat(m, n) -dm = nerv.CuMatrixDouble(m, n) -for i = 0, m - 1 do - for j = 0, n - 1 do - -- local t = math.random(10) - t = i / (j + 1) - fm[i][j] = t - dm[i][j] = t - end -end -print(fm) -fs = fm:create() -fs:softmax(fm) --- print(fs) -print(dm) -ds = dm:create() -ds:softmax(dm) --- print(ds) -print(fs) -print(fs + fs) -print(ds + ds) -print(fs - fs) -print(ds - ds) -a = fs:create() -a:mul_elem(fs, fs) -print(a) -a:log_elem(fs) -print(a) -```
\ No newline at end of file |