summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2016-05-08 11:38:28 +0800
committerDeterminant <[email protected]>2016-05-08 11:38:28 +0800
commit88b3f2a13fa3c01a684259e85ee8298e35f2ac09 (patch)
tree1c5ff4e2759ea88f6a9daa5fcafbc07d91951c00
parente3ed809bb7d5d11b5b2cec559955b15db18db915 (diff)
prepare for the replacement of `asr_trainer.lua` with `trainer.lua`
-rw-r--r--nerv/examples/trainer.lua36
-rw-r--r--nerv/layer/bias.lua9
-rw-r--r--nerv/layer/graph.lua6
-rw-r--r--nerv/layer/window.lua9
-rw-r--r--nerv/nerv2
-rw-r--r--nerv/nn/trainer.lua75
6 files changed, 91 insertions, 46 deletions
diff --git a/nerv/examples/trainer.lua b/nerv/examples/trainer.lua
index 783ff1d..8e3efcb 100644
--- a/nerv/examples/trainer.lua
+++ b/nerv/examples/trainer.lua
@@ -1,9 +1,9 @@
require 'lfs'
require 'pl'
--- =======================================================
--- Deal with command line input & init training envrioment
--- =======================================================
+-- =========================================================
+-- Deal with command line input & init training envrioment
+-- =========================================================
local function check_and_add_defaults(spec, opts)
local function get_opt_val(k)
@@ -14,15 +14,14 @@ local function check_and_add_defaults(spec, opts)
if opt_v then
nerv.info("resuming from previous training state")
gconf = dofile(opt_v)
- else
- for k, v in pairs(spec) do
- local opt_v, specified = get_opt_val(k)
- if (not specified) and gconf[k] ~= nil then
- nerv.info("using setting in network config file: %s = %s", k, gconf[k])
- elseif opt_v ~= nil then
- nerv.info("using setting in options: %s = %s", k, opt_v)
- gconf[k] = opt_v
- end
+ end
+ for k, v in pairs(spec) do
+ local opt_v, specified = get_opt_val(k)
+ if (not specified) and gconf[k] ~= nil then
+ nerv.info("using setting in network config file: %s = %s", k, gconf[k])
+ elseif opt_v ~= nil then
+ nerv.info("using setting in options: %s = %s", k, opt_v)
+ gconf[k] = opt_v
end
end
end
@@ -65,6 +64,7 @@ end
local trainer_defaults = {
lrate = 0.8,
+ hfactor = 0.5,
batch_size = 256,
chunk_size = 1,
buffer_size = 81920,
@@ -125,7 +125,8 @@ end
local date_pattern = "%Y-%m-%d_%H:%M:%S"
local logfile_name = "log"
-local working_dir = opts["dir"].val or string.format("nerv_%s", os.date(date_pattern))
+local working_dir = opts["dir"].val or
+ string.format("nerv_%s", os.date(date_pattern))
gconf.working_dir = working_dir
gconf.date_pattern = date_pattern
@@ -139,9 +140,9 @@ dir.copyfile(script, working_dir)
-- set logfile path
nerv.set_logfile(path.join(working_dir, logfile_name))
--- =============
--- main function
--- =============
+-- ============
+-- Main loop
+-- ============
local trainer = gconf.trainer(gconf)
trainer:training_preprocess()
@@ -160,6 +161,7 @@ for i = gconf.cur_iter, gconf.max_iter do
local test_err = trainer:process('test', false)
nerv.info('[TE] testset error %d: %.3f', i, test_err)
end
- trainer:halving(train_err, cv_err)
+ trainer:save_params(train_err, cv_err)
end
+dump_gconf(path.join(working_dir, string.format("iter_%d.meta", gconf.max_iter + 1)))
trainer:training_afterprocess()
diff --git a/nerv/layer/bias.lua b/nerv/layer/bias.lua
index 03e310d..d3c7cdb 100644
--- a/nerv/layer/bias.lua
+++ b/nerv/layer/bias.lua
@@ -11,6 +11,9 @@ function BiasLayer:bind_params()
nerv.BiasParam,
{1, self.dim_out[1]},
nerv.Param.gen_zero)
+ if self.lconf.no_update_all then
+ self.bias.no_update = true
+ end
end
function BiasLayer:init()
@@ -34,3 +37,9 @@ end
function BiasLayer:get_params()
return nerv.ParamRepo({self.bias}, self.loc_type)
end
+
+function BiasLayer:back_propagate()
+end
+
+function BiasLayer:update()
+end
diff --git a/nerv/layer/graph.lua b/nerv/layer/graph.lua
index 5b5d4c7..f8462f7 100644
--- a/nerv/layer/graph.lua
+++ b/nerv/layer/graph.lua
@@ -17,7 +17,7 @@ local GraphLayer = nerv.class('nerv.GraphLayer', 'nerv.Layer')
-- @param layer_conf a table providing with settings dedicated for the layer,
-- the following fields should be specified:
--
--- * `lrepo`: the layer repo that should be used to find the sub-level layers
+-- * `layer_repo`: the layer repo that should be used to find the sub-level layers
-- * `connections`: an array of 3-tuples describing the connections of
-- sub-level layers, the structure is as follow:
--
@@ -33,8 +33,8 @@ local GraphLayer = nerv.class('nerv.GraphLayer', 'nerv.Layer')
--
-- <layer_id>[<port_idx>]
-- where the `<layer_id>` is a string that identifies the layer in
--- `lconf.lrepo`, and `<port_id>` is the input or output port index when used
--- in the first or second port specification respectively.
+-- `layer_conf.layer_repo`, and `<port_id>` is the input or output port index
+-- when used in the first or second port specification respectively.
--
-- The third element in the tuple is an integer specifying the time delay of
-- this connection. In most cases, it will be simply zero. But for an
diff --git a/nerv/layer/window.lua b/nerv/layer/window.lua
index 729ab58..fb74b14 100644
--- a/nerv/layer/window.lua
+++ b/nerv/layer/window.lua
@@ -11,6 +11,9 @@ function WindowLayer:bind_params()
nerv.BiasParam,
{1, self.dim_out[1]},
nerv.Param.gen_zero)
+ if self.lconf.no_update_all then
+ self.window.no_update = true
+ end
end
function WindowLayer:init()
@@ -34,3 +37,9 @@ end
function WindowLayer:get_params()
return nerv.ParamRepo({self.window}, self.loc_type)
end
+
+function WindowLayer:back_propagate()
+end
+
+function WindowLayer:update()
+end
diff --git a/nerv/nerv b/nerv/nerv
index 4c20ec7..1b32a4e 100644
--- a/nerv/nerv
+++ b/nerv/nerv
@@ -10,7 +10,7 @@ local function print_help()
nerv.print_usage(options)
end
-nerv.printf("*** NERV: A Lua-based toolkit for high-performance deep learning (alpha) ***\n")
+nerv.printf("*** NERV: A Lua-based toolkit for high-performance deep learning (beta) ***\n")
arg, opts = nerv.parse_args(arg, options)
if #arg < 1 or opts["help"].val then
print_help()
diff --git a/nerv/nn/trainer.lua b/nerv/nn/trainer.lua
index 4ae08d9..44390ea 100644
--- a/nerv/nn/trainer.lua
+++ b/nerv/nn/trainer.lua
@@ -1,8 +1,8 @@
local trainer = nerv.class('nerv.Trainer')
function trainer:__init(gconf)
- self.gconf = gconf
local mat_type
+ self.gconf = gconf
self.src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
local src_loc_type = self.src_loc_type
if gconf.use_cpu then
@@ -13,16 +13,19 @@ function trainer:__init(gconf)
self.train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_DEVICE
end
local train_loc_type = self.train_loc_type
-
local host_param_repo = nerv.ParamRepo()
+ -- import the parameters from chunk files
host_param_repo:import(gconf.initialized_param, gconf)
local param_repo = host_param_repo:copy(train_loc_type, gconf)
+ -- create layers and establish initial bindings
self.layer_repo = self:make_layer_repo(param_repo)
local layer_repo = self.layer_repo
+ -- compile the network to be trained
local graph = self:get_network(layer_repo)
self.input_order = self:get_input_order()
-
- self.network = nerv.Network('network', gconf, {network = graph, clip = gconf.clip})
+ self.network = nerv.Network('network', gconf,
+ {network = graph,
+ clip = gconf.clip})
local network = self.network
network:init(gconf.batch_size, gconf.chunk_size)
@@ -31,9 +34,9 @@ function trainer:__init(gconf)
local err_output = self.err_output
for i = 1, #dim_in do
err_output[i] = {}
- local tmp = mat_type(gconf.batch_size, dim_in[i])
+ local dummy = mat_type(gconf.batch_size, dim_in[i])
for t = 1, gconf.chunk_size do
- err_output[i][t] = tmp
+ table.insert(err_output[i], dummy)
end
end
self.output = {}
@@ -43,16 +46,19 @@ function trainer:__init(gconf)
for i = 1, #dim_out do
output[i] = {}
for t = 1, gconf.chunk_size do
- output[i][t] = mat_type(gconf.batch_size, dim_out[i])
+ table.insert(output[i], mat_type(gconf.batch_size, dim_out[i]))
end
err_input[i] = {}
- local tmp = mat_type(gconf.batch_size, dim_out[i])
- tmp:fill(0)
+ if dim_out[i] ~= 1 then
+ nerv.warning("the output has multiple heads, the default " ..
+ "`err_input` will be zero")
+ end
for t = 1, gconf.chunk_size do
if dim_out[i] == 1 then
- err_input[i][t] = gconf.mask[t]
+ table.insert(err_input[i], gconf.mask[t])
else
- err_input[i][t] = tmp
+ table.insert(err_input[i], mat_type(gconf.batch_size, dim_out[i]))
+ err_input[i][t]:fill(0)
end
end
end
@@ -89,15 +95,16 @@ function trainer:process(dataset, do_train)
local err_output = self.err_output
network:epoch_init()
- while true do
- local data = buffer:get_data()
- if data == nil then
- break
- end
-
+ for data in buffer.get_data, buffer do
cnt = cnt + 1
- local info = {input = {}, output = output, err_input = err_input, err_output = err_output,
- do_train = do_train, seq_length = data.seq_length, new_seq = data.new_seq}
+ local info = {input = {},
+ output = output,
+ err_input = err_input,
+ err_output = err_output,
+ do_train = do_train,
+ seq_length = data.seq_length,
+ new_seq = data.new_seq}
+
for i = 1, #network.dim_in do
info.input[i] = data.data[input_order[i]]
end
@@ -105,7 +112,7 @@ function trainer:process(dataset, do_train)
self:mini_batch_preprocess(cnt, info)
network:mini_batch_init(info)
network:propagate()
- self:mini_batch_middleprocess(cnt, info)
+ self:mini_batch_inprocess(cnt, info)
if do_train then
network:back_propagate()
network:update()
@@ -119,18 +126,31 @@ function trainer:process(dataset, do_train)
return self:get_error()
end
-function trainer:halving(train_err, cv_err)
+function trainer:if_accept(cv_err)
+ return cv_err < gconf.best_cv
+end
+
+function trainer:do_halving()
+ gconf.lrate = gconf.lrate * gconf.hfactor
+end
+
+function trainer:save_params(train_err, cv_err)
local gconf = self.gconf
local src_loc_type = self.src_loc_type
local train_loc_type = self.train_loc_type
local layer_repo = self.layer_repo
- local param_fname = string.format('%s_iter_%d_lr%f_tr%.3f_cv%.3f.nerv', os.date(gconf.date_pattern), gconf.cur_iter, gconf.lrate, train_err, cv_err)
+ local param_fname = string.format('%s_iter_%d_lr%f_tr%.3f_cv%.3f.nerv',
+ os.date(gconf.date_pattern),
+ gconf.cur_iter,
+ gconf.lrate,
+ train_err,
+ cv_err)
param_fname = path.join(gconf.working_dir, param_fname)
local network = self.network
local host_param_repo = network:get_params():copy(src_loc_type, gconf)
host_param_repo:export(param_fname)
- if cv_err < gconf.best_cv then
+ if self:if_accept(cv_err) then
nerv.info("accepting the trained params")
gconf.best_cv = cv_err
gconf.initialized_param = {param_fname}
@@ -140,8 +160,9 @@ function trainer:halving(train_err, cv_err)
host_param_repo = nerv.ParamRepo()
host_param_repo:import(gconf.initialized_param, gconf)
local param_repo = host_param_repo:copy(train_loc_type, gconf)
+ -- rebind the parameters
layer_repo:rebind(param_repo)
- gconf.lrate = gconf.lrate * 0.5
+ self:do_halving()
end
end
@@ -160,7 +181,7 @@ end
function trainer:mini_batch_preprocess(cnt, info)
end
-function trainer:mini_batch_middleprocess(cnt, info)
+function trainer:mini_batch_inprocess(cnt, info)
end
function trainer:mini_batch_afterprocess(cnt, info)
@@ -181,3 +202,7 @@ end
function trainer:get_input_order()
nerv.error_method_not_implemented()
end
+
+function trainer:get_error()
+ nerv.error_method_not_implemented()
+end