summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorQi Liu <[email protected]>2016-03-01 20:00:53 +0800
committerQi Liu <[email protected]>2016-03-01 20:00:53 +0800
commit2ea3e139af91eb894d904d7a956e28619b1a70f6 (patch)
tree249bb3ace8004f8d79d0e41ee97587fcc015d3de
parent1a424bf9233f9b1c67ef135f1a3892b7986c5564 (diff)
network init complete
-rw-r--r--nerv/Makefile2
-rw-r--r--nerv/layer/duplicate.lua40
-rw-r--r--nerv/layer/graph.lua3
-rw-r--r--nerv/layer/init.lua1
-rw-r--r--nerv/layer/rnn.lua8
-rw-r--r--nerv/main.lua18
-rw-r--r--nerv/nn/network.lua324
7 files changed, 367 insertions, 29 deletions
diff --git a/nerv/Makefile b/nerv/Makefile
index c9c3e42..0a2aa86 100644
--- a/nerv/Makefile
+++ b/nerv/Makefile
@@ -34,7 +34,7 @@ LUA_LIBS := matrix/init.lua io/init.lua init.lua \
layer/init.lua layer/affine.lua layer/sigmoid.lua layer/tanh.lua layer/softmax_ce.lua layer/softmax.lua \
layer/window.lua layer/bias.lua layer/combiner.lua layer/mse.lua \
layer/elem_mul.lua layer/lstm.lua layer/lstm_gate.lua layer/dropout.lua layer/gru.lua \
- layer/graph.lua layer/rnn.lua \
+ layer/graph.lua layer/rnn.lua layer/duplicate.lua\
nn/init.lua nn/layer_repo.lua nn/param_repo.lua nn/layer_dag.lua nn/network.lua \
io/sgd_buffer.lua \
tnn/init.lua tnn/sutil.lua tnn/tnn.lua
diff --git a/nerv/layer/duplicate.lua b/nerv/layer/duplicate.lua
new file mode 100644
index 0000000..58758e8
--- /dev/null
+++ b/nerv/layer/duplicate.lua
@@ -0,0 +1,40 @@
+local DuplicateLayer = nerv.class('nerv.DuplicateLayer', 'nerv.Layer')
+
+function DuplicateLayer:__init(id, global_conf, layer_conf)
+ self.id = id
+ self.dim_in = layer_conf.dim_in
+ self.dim_out = layer_conf.dim_out
+ self.gconf = global_conf
+ self:check_dim_len(1, -1)
+ if #self.dim_out < 1 then
+ nerv.error('no output specified')
+ end
+ for i = 1, #self.dim_out do
+ if self.dim_out[i] ~= self.dim_in[1] then
+ nerv.error('mismatching dimensions of outputs')
+ end
+ end
+end
+
+function DuplicateLayer:init(batch_size)
+end
+
+function DuplicateLayer:batch_resize(batch_size)
+end
+
+function DuplicateLayer:update(bp_err, input, output)
+end
+
+function DuplicateLayer:propagate(input, output)
+ for i = 1, #self.dim_out do
+ output[i]:copy_from(input[1])
+ -- FIXME: use reference copy to speed up
+ end
+end
+
+function DuplicateLayer:back_propagate(bp_err, next_bp_err, input, output)
+ next_bp_err:copy_from(bp_err[1])
+ for i = 2, #self.dim_out do
+ next_bp_err:add(next_bp_err, bp_err[i], 1.0, 1.0)
+ end
+end
diff --git a/nerv/layer/graph.lua b/nerv/layer/graph.lua
index 36a9672..d72d849 100644
--- a/nerv/layer/graph.lua
+++ b/nerv/layer/graph.lua
@@ -64,6 +64,9 @@ function GraphLayer:graph_init(layer_repo, connections)
local id_to, port_to = parse_id(to)
local ref_from = self:discover(id_from, layer_repo)
local ref_to = self:discover(id_to, layer_repo)
+ if ref_from.outputs[port_from] ~= nil then
+ nerv.error('%s has already been attached', from)
+ end
if ref_to.inputs[port_to] ~= nil then
nerv.error('%s has already been attached', to)
end
diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua
index 5e3395c..6f26d4d 100644
--- a/nerv/layer/init.lua
+++ b/nerv/layer/init.lua
@@ -125,6 +125,7 @@ nerv.include('lstm_gate.lua')
nerv.include('dropout.lua')
nerv.include('gru.lua')
nerv.include('rnn.lua')
+nerv.include('duplicate.lua')
-- The following lines are for backward compatibility, and will be removed in
-- the future. The use of these names are deprecated.
diff --git a/nerv/layer/rnn.lua b/nerv/layer/rnn.lua
index 8816891..806ac58 100644
--- a/nerv/layer/rnn.lua
+++ b/nerv/layer/rnn.lua
@@ -22,6 +22,9 @@ function RNNLayer:__init(id, global_conf, layer_conf)
['nerv.SigmoidLayer'] = {
sigmoid = {dim_in = {dout}, dim_out = {dout}},
},
+ ['nerv.DuplicateLayer'] = {
+ dup = {dim_in = {dout}, dim_out = {dout, dout}},
+ }
}
local layer_repo = nerv.LayerRepo(layers, pr, global_conf)
@@ -29,8 +32,9 @@ function RNNLayer:__init(id, global_conf, layer_conf)
local connections = {
{'<input>[1]', 'main[1]', 0},
{'main[1]', 'sigmoid[1]', 0},
- {'sigmoid[1]', 'main[2]', 1},
- {'sigmoid[1]', '<output>[1]', 0},
+ {'sigmoid[1]', 'dup[1]', 0},
+ {'dup[1]', 'main[2]', 1},
+ {'dup[2]', '<output>[1]', 0},
}
self:graph_init(layer_repo, connections)
diff --git a/nerv/main.lua b/nerv/main.lua
index 0633e87..5cb7d07 100644
--- a/nerv/main.lua
+++ b/nerv/main.lua
@@ -17,6 +17,12 @@ local layer_repo = nerv.LayerRepo(
['nerv.SigmoidLayer'] = {
sigmoid = {dim_in = {23}, dim_out = {23}},
},
+ ['nerv.SoftmaxLayer'] = {
+ softmax = {dim_in = {79}, dim_out = {79}},
+ },
+ ['nerv.DuplicateLayer'] = {
+ dup = {dim_in = {79}, dim_out = {79, 79}},
+ },
}, nerv.ParamRepo(), global_conf)
local connections = {
@@ -24,10 +30,14 @@ local connections = {
{'input[1]', 'sigmoid[1]', 0},
{'sigmoid[1]', 'rnn[1]', 0},
{'rnn[1]', 'output[1]', 0},
- {'output[1]', 'output[2]', 1},
- {'output[1]', '<output>[1]', 0},
+ {'output[1]', 'dup[1]', 0},
+ {'dup[1]', 'output[2]', -1},
+ {'dup[2]', 'softmax[1]', 0},
+ {'softmax[1]', '<output>[1]', 0},
}
-local graph = nerv.GraphLayer('network', global_conf, {dim_in = {20}, dim_out = {79}, layer_repo = layer_repo, connections = connections})
+local graph = nerv.GraphLayer('graph', global_conf, {dim_in = {20}, dim_out = {79}, layer_repo = layer_repo, connections = connections})
+
+local network = nerv.Network('network', global_conf, {network = graph})
-local network = nerv.Network(graph)
+network:init(2,5)
diff --git a/nerv/nn/network.lua b/nerv/nn/network.lua
index 6cee08b..01290e7 100644
--- a/nerv/nn/network.lua
+++ b/nerv/nn/network.lua
@@ -1,15 +1,47 @@
local network = nerv.class('nerv.Network')
-function network:__init(graph)
+function network:__init(id, global_conf, network_conf)
+ self.id = id
+ self.dim_in = network_conf.network.dim_in
+ self.dim_out = network_conf.network.dim_out
+ self.gconf = global_conf
+ if self.gconf.use_cpu then
+ self.mat_type = self.gconf.mmat_type
+ else
+ self.mat_type = self.gconf.cumat_type
+ end
+ self.clip = network_conf.clip
+ self.nn_act_default = network_conf.nn_act_default
+ if self.nn_act_default == nil then
+ self.nn_act_default = 0
+ end
self.layers = {}
- self.socket = self:compile(graph)
+ self.input_conn = {}
+ self.output_conn = {}
+ self.socket = self:compile(network_conf.network)
+ for i = 1, #self.dim_in do
+ local edge = self.socket.inputs[i]
+ local id, port, time = edge[1], edge[2], edge[3]
+ if self.input_conn[id][port] ~= nil then
+ nerv.error('duplicate edge')
+ end
+ self.input_conn[id][port] = {0, i, time}
+ end
+ for i = 1, #self.dim_out do
+ local edge = self.socket.outputs[i]
+ local id, port, time = edge[1], edge[2], edge[3]
+ if self.output_conn[id][port] ~= nil then
+ nerv.error('duplicate edge')
+ end
+ self.output_conn[id][port] = {0, i, time}
+ end
+ self.delay = 0
for i = 1, #self.layers do
- print(self.layers[i].layer.id)
- local _, dim_out = self.layers[i].layer:get_dim()
- for j = 1, #dim_out do
- for k = 1, #self.layers[i].connections[j] do
- local connections = self.layers[i].connections[j][k]
- print(i, connections[1], connections[2], connections[3])
+ local dim_in, _ = self.layers[i]:get_dim()
+ for j = 1, #dim_in do
+ local time = self.input_conn[i][j][3]
+ if math.abs(time) > self.delay then
+ self.delay = math.abs(time)
end
end
end
@@ -18,15 +50,16 @@ end
function network:compile(layer)
local socket = {inputs = {}, outputs = {}}
if not nerv.is_type(layer, 'nerv.GraphLayer') then
- table.insert(self.layers, {layer = layer, connections = {}})
+ table.insert(self.layers, layer)
local id = #self.layers
+ self.input_conn[id] = {}
+ self.output_conn[id] = {}
local dim_in, dim_out = layer:get_dim()
for i = 1, #dim_in do
- socket.inputs[i] = {{id, i, 0}}
+ socket.inputs[i] = {id, i, 0}
end
for i = 1, #dim_out do
socket.outputs[i] = {id, i, 0}
- self.layers[id].connections[i] = {}
end
else
local sublayer_socket = {}
@@ -35,34 +68,281 @@ function network:compile(layer)
sublayer_socket[sublayer.id] = self:compile(sublayer.layer)
end
end
- local dim_in, _ = layer:get_dim()
- for i = 1, #dim_in do
- socket.inputs[i] = {}
- end
for _, edge in pairs(layer.connections) do
-- id = 0 means <input> or <output>
local id_from, port_from = edge[1], edge[2]
local id_to, port_to = edge[3], edge[4]
local time = edge[5]
if id_from == 0 then
- for _, input in pairs(sublayer_socket[id_to].inputs[port_to]) do
- local id, port, t = input[1], input[2], input[3] + time
- table.insert(socket.inputs[port_from], {id, port, t})
+ if socket.inputs[port_from] ~= nil then
+ nerv.error('duplicate input socket')
end
+ local input = sublayer_socket[id_to].inputs[port_to]
+ local id, port, t = input[1], input[2], input[3] + time
+ socket.inputs[port_from] = {id, port, t}
else
local output = sublayer_socket[id_from].outputs[port_from]
local id, port, t = output[1], output[2], output[3] + time
if id_to == 0 then
+ if socket.outputs[port_to] ~= nil then
+ nerv.error('duplicate output socket')
+ end
socket.outputs[port_to] = {id, port, t}
else
- local connections = self.layers[id].connections[port]
- for _, input in pairs(sublayer_socket[id_to].inputs[port_to]) do
- local id1, port1, t1 = input[1], input[2], input[3]
- table.insert(connections, {id1, port1, t + t1})
+ local input = sublayer_socket[id_to].inputs[port_to]
+ local id1, port1, t1 = input[1], input[2], input[3]
+ if self.input_conn[id1][port1] ~= nil or self.output_conn[id][port] ~= nil then
+ nerv.error('duplicate edge')
end
+ self.input_conn[id1][port1] = {id, port, t + t1}
+ self.output_conn[id][port] = {id1, port1, t + t1}
end
end
end
end
return socket
end
+
+function network:init(batch_size, chunk_size)
+ self.batch_size = batch_size
+ self.chunk_size = chunk_size
+
+ self:topsort()
+
+ self:make_initial_store()
+ collectgarbage('collect')
+end
+
+function network:topsort()
+ nerv.info('Network topology sort')
+ local degree = {}
+ for t = 1, self.chunk_size do
+ degree[t] = {}
+ for i = 1, #self.layers do
+ degree[t][i] = 0
+ end
+ end
+
+ for t = 1, self.chunk_size do
+ for i = 1, #self.layers do
+ local _, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_out do
+ if self.output_conn[i][j] ~= nil then
+ local edge = self.output_conn[i][j]
+ local id, _, time = edge[1], edge[2], edge[3] + t
+ if time >= 1 and time <= self.chunk_size and id ~= 0 then
+ degree[time][id] = degree[time][id] + 1
+ end
+ end
+ end
+ end
+ end
+
+ self.queue = {}
+ local l = 1
+ local r = 0
+ for t = 1, self.chunk_size do
+ for i = 1, #self.layers do
+ if degree[t][i] == 0 then
+ r = r + 1
+ self.queue[r] = {chunk = t, id = i}
+ end
+ end
+ end
+ while l<=r do
+ local t, i = self.queue[l].chunk, self.queue[l].id
+ l = l + 1
+ local _, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_out do
+ if self.output_conn[i][j] ~= nil then
+ local edge = self.output_conn[i][j]
+ local id, _, time = edge[1], edge[2], edge[3] + t
+ if time >= 1 and time <= self.chunk_size and id ~= 0 then
+ degree[time][id] = degree[time][id] - 1
+ if degree[time][id] == 0 then
+ r = r + 1
+ self.queue[r] = {chunk = time, id = id}
+ end
+ end
+ end
+ end
+ end
+
+ if r ~= self.chunk_size * #self.layers then
+ nerv.error('loop detected')
+ end
+end
+
+function network:make_initial_store()
+ nerv.info('Network initing storage')
+
+ -- allocate memory
+ local memory = {}
+ local err_memory = {}
+ for t = 1 - self.delay, self.chunk_size + self.delay do
+ memory[t] = {}
+ err_memory[t] = {}
+ for i = 1, #self.layers do
+ memory[t][i] = {}
+ err_memory[t][i] = {}
+ local dim_in, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_in do
+ err_memory[t][i][j] = self.mat_type(self.batch_size, dim_in[j])
+ err_memory[t][i][j]:fill(0)
+ end
+ for j = 1, #dim_out do
+ memory[t][i][j] = self.mat_type(self.batch_size, dim_out[j])
+ memory[t][i][j]:fill(self.nn_act_default)
+ end
+ end
+ -- memory[t][0] stores network input
+ memory[t][0] = {}
+ for j = 1, #self.dim_in do
+ memory[t][0][j] = self.mat_type(self.batch_size, self.dim_in[j])
+ memory[t][0][j]:fill(self.nn_act_default)
+ end
+ -- err_memory[t][0] stores network err_input
+ err_memory[t][0] = {}
+ for j = 1, #self.dim_out do
+ err_memory[t][0][j] = self.mat_type(self.batch_size, self.dim_out[j])
+ err_memory[t][0][j]:fill(0)
+ end
+ end
+
+ -- connect memory and reference
+ self.input = {}
+ self.output = {}
+ self.err_input = {}
+ self.err_output = {}
+ for t = 1, self.chunk_size do
+ self.input[t] = {}
+ self.output[t] = {}
+ self.err_input[t] = {}
+ self.err_output[t] = {}
+ for i = 1, #self.layers do
+ self.input[t][i] = {}
+ self.output[t][i] = {}
+ self.err_input[t][i] = {}
+ self.err_output[t][i] = {}
+ local dim_in, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_in do
+ local edge = self.input_conn[i][j]
+ local id, port, time = edge[1], edge[2], edge[3]
+ if id ~= 0 or t - time < 1 or t - time > self.chunk_size then
+ self.input[t][i][j] = memory[t - time][id][port]
+ end
+ if id ~= 0 then
+ self.err_output[t][i][j] = err_memory[t][i][j]
+ end
+ end
+ for j = 1, #dim_out do
+ local edge = self.output_conn[i][j]
+ local id, port, time = edge[1], edge[2], edge[3]
+ if id ~= 0 then
+ self.output[t][i][j] = memory[t][i][j]
+ end
+ if id ~= 0 or t + time < 1 or t + time > self.chunk_size then
+ self.err_input[t][i][j] = err_memory[t + time][id][port]
+ end
+ end
+ end
+ end
+
+ -- check dangling reference
+ for t = 1, self.chunk_size do
+ for i = 1, #self.dim_in do
+ local edge = self.socket.inputs[i]
+ local id, port, time = edge[1], edge[2], edge[3]
+ if t + time >= 1 and t + time <= self.chunk_size then
+ if self.input[t + time][id][port] ~= nil then
+ nerv.error('input reference not nil')
+ end
+ self.input[t + time][id][port] = true -- just a place holder
+ if self.err_output[t + time][id][port] ~= nil then
+ nerv.error('err_output reference not nil')
+ end
+ self.err_output[t + time][id][port] = true -- just a place holder
+ end
+ end
+ for i = 1, #self.dim_out do
+ local edge = self.socket.outputs[i]
+ local id, port, time = edge[1], edge[2], edge[3]
+ if t - time >= 1 and t - time <= self.chunk_size then
+ if self.output[t - time][id][port] ~= nil then
+ nerv.error('output reference not nil')
+ end
+ self.output[t - time][id][port] = true -- just a place holder
+ if self.err_input[t - time][id][port] ~= nil then
+ nerv.error('err_output reference not nil')
+ end
+ self.err_input[t - time][id][port] = true -- just a place holder
+ end
+ end
+ end
+ for t = 1, self.chunk_size do
+ for i = 1, #self.layers do
+ local dim_in, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_in do
+ if self.input[t][i][j] == nil then
+ nerv.error('input reference dangling')
+ end
+ if self.err_output[t][i][j] == nil then
+ nerv.error('err_output reference dangling')
+ end
+ end
+ for j = 1, #dim_out do
+ if self.output[t][i][j] == nil then
+ nerv.error('output reference dangling')
+ end
+ if self.err_input[t][i][j] == nil then
+ nerv.error('err_input reference dangling')
+ end
+ end
+ end
+ end
+
+ -- allocate reference for legacy of previous mini-batch
+ self.legacy = {}
+ for t = 1 - self.delay, 0 do
+ self.legacy[t] = {}
+ for i = 1, #self.layers do
+ self.legacy[t][i] = {}
+ local _, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_out do
+ self.legacy[t][i][j] = memory[t][i][j]
+ end
+ end
+ end
+end
+
+function network:mini_batch_init(information)
+ self.info = information
+ self.max_chunk = 0
+ for i = 1, self.batch_size do
+ if self.info.seq_length[i] > self.max_chunk then
+ self.max_chunk = self.info.seq_length[i]
+ end
+ end
+ for t = 1 - self.delay, 0 do
+ for i = 1, #self.layers do
+ local _, dim_out = self.layers[i]:get_dim()
+ for j = 1, #dim_out do
+ self.output[t][i][j]:copy_from(self.output[t + self.chunk_size][i][j])
+ end
+ end
+ end
+ for t = self.max_chunk + 1, self.max_chunk + self.delay do
+ if t > self.chunk_size then
+ break
+ end
+ for i = 1, #self.layers do
+ local dim_in, _ = self.layers[i]:get_dim()
+ for j = 1, #dim_in do
+ self.err_output[t][i][j]:fill(0)
+ end
+ end
+ end
+end
+
+function network:propagate(input, output)
+end