diff options
author | Determinant <[email protected]> | 2015-06-24 22:48:24 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-06-24 22:48:24 +0800 |
commit | 5e407d74130accfbbf94d2cabcb03fc126a89410 (patch) | |
tree | 6d8998e904a31a95f85a6e64ac7f3940fb61af80 | |
parent | 8f13607cba9d6cf4fc4a213ba5ae4bcd46f7e18d (diff) |
separate non-Lua part of matrix code to a dedicated dir
29 files changed, 1805 insertions, 537 deletions
diff --git a/nerv/Makefile b/nerv/Makefile index 4008453..06a439a 100644 --- a/nerv/Makefile +++ b/nerv/Makefile @@ -1,58 +1,65 @@ .PHONY: build install clean SHELL := /bin/bash BUILD_DIR := $(CURDIR)/build -OBJS := nerv.o lib/luaT/luaT.o lib/io/chunk_file.o common.o \ - matrix/mmatrix.o matrix/cumatrix.o matrix/init.o matrix/cukernel.o \ +LIB_PATH := $(LUA_BINDIR)/../lib +OBJ_DIR := $(BUILD_DIR)/objs +CORE_OBJS := common.o lib/io/chunk_file.o lib/matrix/mmatrix.o lib/matrix/cumatrix.o lib/matrix/cukernel.o +NERV_OBJS := nerv.o \ + matrix/mmatrix.o matrix/cumatrix.o matrix/init.o \ io/init.o io/chunk_file.o \ examples/oop_example.o -LIBS := libnerv.so +LUAT_OBJS := lib/luaT/luaT.o +CORE_OBJS := $(addprefix $(OBJ_DIR)/,$(CORE_OBJS)) +NERV_OBJS := $(addprefix $(OBJ_DIR)/,$(NERV_OBJS)) +LUAT_OBJS := $(addprefix $(OBJ_DIR)/,$(LUAT_OBJS)) +OBJS := $(CORE_OBJS) $(NERV_OBJS) $(LUAT_OBJS) +LIBS := $(INST_LIBDIR)/libnerv.so $(LIB_PATH)/libnervcore.so $(LIB_PATH)/libluaT.so LUA_LIBS := matrix/init.lua io/init.lua init.lua \ layer/init.lua layer/affine.lua layer/sigmoid.lua layer/softmax_ce.lua \ layer/window.lua layer/bias.lua layer/combiner.lua layer/mse.lua \ nn/init.lua nn/layer_repo.lua nn/param_repo.lua nn/layer_dag.lua \ io/sgd_buffer.lua INCLUDE := -I $(LUA_INCDIR) -DLUA_USE_APICHECK -CUDA_BASE := /usr/local/cuda-6.5 -#CUDA_BASE := /usr/local/cuda-5.0 +#CUDA_BASE := /usr/local/cuda-6.5 +CUDA_BASE := /usr/local/cuda-5.0 CUDA_INCLUDE := -I $(CUDA_BASE)/include/ INCLUDE += $(CUDA_INCLUDE) LDFLAGS := -L$(CUDA_BASE)/lib64/ -Wl,-rpath=$(CUDA_BASE)/lib64/ -lcudart -lcublas CFLAGS := -Wall -Wextra -O2 -OBJ_DIR := $(BUILD_DIR)/objs -SUBDIR := matrix io layer examples nn lib/io lib/luaT +SUBDIR := matrix io layer examples nn lib/io lib/luaT lib/matrix NVCC := $(CUDA_BASE)/bin/nvcc NVCC_FLAGS := -Xcompiler -fPIC,-Wall,-Wextra LUA_DIR = $(INST_LUADIR)/nerv -OBJS := $(addprefix $(OBJ_DIR)/,$(OBJS)) OBJ_SUBDIR := $(addprefix $(OBJ_DIR)/,$(SUBDIR)) LUA_SUBDIR := $(addprefix $(LUA_DIR)/,$(SUBDIR)) -LIBS := $(addprefix $(INST_LIBDIR)/,$(LIBS)) LUA_LIBS := $(addprefix $(LUA_DIR)/,$(LUA_LIBS)) build: $(OBJ_DIR) $(OBJ_SUBDIR) $(OBJS) + $(OBJ_DIR) $(LUA_DIR) $(OBJ_SUBDIR) $(LUA_SUBDIR): -mkdir -p $@ $(OBJ_DIR)/%.o: %.c $(patsubst /%.o,/%.c,$@) gcc -c -o $@ $< $(INCLUDE) -fPIC $(CFLAGS) -$(OBJ_DIR)/matrix/cukernel.o: matrix/cukernel.cu +$(OBJ_DIR)/lib/matrix/cukernel.o: lib/matrix/cukernel.cu $(NVCC) -c -o $@ $< $(INCLUDE) $(NVCC_FLAGS) $(LUA_DIR)/%.lua: %.lua cp $< $@ #$(OBJ_DIR)/luaT.o: # gcc -c -o $@ luaT/luaT.c $(INCLUDE) -fPIC -$(LIBS): $(OBJS) - gcc -shared -o $@ $(OBJS) $(LDFLAGS) +$(LIB_PATH)/libnervcore.so: $(CORE_OBJS) + gcc -shared -o $@ $^ $(LDFLAGS) +$(LIB_PATH)/libluaT.so: $(LUAT_OBJS) + gcc -shared -o $@ $^ $(LDFLAGS) +$(INST_LIBDIR)/libnerv.so: $(NERV_OBJS) $(LIB_PATH)/libnervcore.so $(LIB_PATH)/libluaT.so + gcc -shared -o $@ $(NERV_OBJS) $(LDFLAGS) -Wl,-rpath=$(LIB_PATH) -L$(LIB_PATH) -lnervcore -lluaT $(OBJ_DIR)/matrix/cumatrix.o: matrix/generic/cumatrix.c matrix/generic/matrix.c matrix/generic/cukernel.cu $(OBJ_DIR)/matrix/mmatrix.o: matrix/generic/mmatrix.c matrix/generic/matrix.c -$(OBJ_DIR)/matrix/cukernel.o: matrix/generic/cukernel.cu - -.PHONY: speech -speech: - -mkdir -p build/objs/speech/tnet_io - $(MAKE) -C speech/ BUILD_DIR=$(BUILD_DIR) LIB_DIR=$(LIB_DIR) OBJ_DIR=$(CURDIR)/build/objs/speech/ LUA_DIR=$(LUA_DIR) +$(OBJ_DIR)/lib/matrix/cumatrix.o: lib/matrix/generic/cumatrix.c lib/matrix/generic/matrix.c lib/matrix/generic/cukernel.cu +$(OBJ_DIR)/lib/matrix/mmatrix.o: lib/matrix/generic/mmatrix.c lib/matrix/generic/matrix.c +$(OBJ_DIR)/lib/matrix/cukernel.o: lib/matrix/generic/cukernel.cu clean: -rm -rf $(OBJ_DIR) diff --git a/nerv/common.c b/nerv/common.c index b4e39e6..0584438 100644 --- a/nerv/common.c +++ b/nerv/common.c @@ -11,6 +11,31 @@ int nerv_error(lua_State *L, const char *err_mesg_fmt, ...) { return 0; } +int nerv_error_status(lua_State *L, Status *status) { + const char *mmesg = NULL; + switch (status->err_code) + { + case MAT_GENERAL_ERR: mmesg = "general error"; break; + case MAT_INSUF_MEM: mmesg = "insufficient memory"; break; + case MAT_INVALID_FORMAT: mmesg = "invalid matrix format"; break; + case MAT_WRITE_ERROR: mmesg = "error while writing matrix"; break; + case MAT_INVALID_COPY_INTERVAL: mmesg = "invalid copy interval"; break; + case MAT_MISMATCH_DIM: mmesg = "mismatching matrix dimension"; break; + case MAT_WRONG_MULT_DIM: mmesg = "wrong multipier dimension"; break; + case MAT_ROW_VECTOR_EXP: mmesg = "row vector expected"; break; + case MAT_COL_VECTOR_EXP: mmesg = "column vector expected"; break; + case MAT_IDX_VECTOR_EXP: mmesg = "index vector expected"; break; + case MAT_INVALID_IDX: mmesg = "invalid index"; break; + case MAT_CUDA_ERR: mmesg = "cuda error"; break; + case MAT_CUBLAS_ERR: mmesg = "cublas error"; break; + } + if (status->msg) + nerv_error(L, "%s: %s @%s:%d", mmesg, status->msg, + status->file, status->lineno); + else + nerv_error(L, "%s @%s:%d", mmesg, status->file, status->lineno); +} + int nerv_error_method_not_implemented(lua_State *L) { return nerv_error(L, "method not implemented"); } diff --git a/nerv/common.h b/nerv/common.h index 6657dc4..413ca51 100644 --- a/nerv/common.h +++ b/nerv/common.h @@ -7,6 +7,50 @@ #include <stdio.h> #include <stdlib.h> +enum { + MAT_NORMAL, + MAT_GENERAL_ERR, + MAT_INSUF_MEM, + MAT_INVALID_FORMAT, + MAT_WRITE_ERROR, + MAT_INVALID_COPY_INTERVAL, + MAT_MISMATCH_DIM, + MAT_WRONG_MULT_DIM, + MAT_ROW_VECTOR_EXP, + MAT_COL_VECTOR_EXP, + MAT_IDX_VECTOR_EXP, + MAT_INVALID_IDX, + MAT_CUDA_ERR, + MAT_CUBLAS_ERR +}; + +typedef struct Status { + int err_code; + const char *file; + int lineno; + const char *msg; +} Status; + +#define NERV_SET_STATUS(status, code, m) \ + do { \ + (status)->err_code = code; \ + (status)->msg = m; \ + (status)->file = __FILE__; \ + (status)->lineno = __LINE__; \ + } while (0) + +#define NERV_EXIT_STATUS(status, code, msg) \ + do { \ + NERV_SET_STATUS(status, code, msg); \ + return; \ + } while (0) + +#define NERV_LUA_CHECK_STATUS(L, status) \ + do { \ + if (status.err_code != MAT_NORMAL) \ + nerv_error_status(L, &status); \ + } while (0) + typedef struct HashNode { const char *key; void *val; @@ -31,6 +75,7 @@ void hashmap_clear(HashMap *h); size_t bkdr_hash(const char *key); int nerv_error(lua_State *L, const char *err_mesg_fmt, ...); +int nerv_error_status(lua_State *L, Status *status); int nerv_error_method_not_implemented(lua_State *L); void luaN_append_methods(lua_State *L, const luaL_Reg *mlist); #endif diff --git a/nerv/lib/io/chunk_file.c b/nerv/lib/io/chunk_file.c index a305962..e70ffc9 100644 --- a/nerv/lib/io/chunk_file.c +++ b/nerv/lib/io/chunk_file.c @@ -91,6 +91,7 @@ static ChunkFile *open_write(const char *fn, int *status) { } cfp = (ChunkFile *)malloc(sizeof(ChunkFile)); cfp->fp = fp; + cfp->info = NULL; cfp->status = CF_WRITE; *status = CF_NORMAL; return cfp; @@ -111,8 +112,6 @@ static ChunkFile *open_read(const char *fn, int *status) { return NULL; } cfp = (ChunkFile *)malloc(sizeof(ChunkFile)); - cfp->fp = fp; - cfp->status = CF_READ; offset = ftello(fp); /* fprintf(stderr, "%d\n", (int)offset); */ for (i = 0;; offset += chunk_len, i++) @@ -144,7 +143,9 @@ static ChunkFile *open_read(const char *fn, int *status) { head = cip; } *status = CF_NORMAL; + cfp->fp = fp; cfp->info = head; + cfp->status = CF_READ; return cfp; } @@ -208,13 +209,16 @@ void nerv_chunk_file_close(ChunkFile *cfp) { void nerv_chunk_file_destroy(ChunkFile *cfp) { ChunkInfo *i, *ni; - if (cfp->status != CF_CLOSED) fclose(cfp->fp); - for (i = cfp->info; i; i = ni) + if (cfp->info) { - ni = i->next; - free(i->metadata); - free(i); + for (i = cfp->info; i; i = ni) + { + ni = i->next; + free(i->metadata); + free(i); + } } + if (cfp->status != CF_CLOSED) fclose(cfp->fp); free(cfp); } diff --git a/nerv/matrix/cuda_helper.h b/nerv/lib/matrix/cuda_helper.h index fde6f18..8041efb 100644 --- a/nerv/matrix/cuda_helper.h +++ b/nerv/lib/matrix/cuda_helper.h @@ -4,33 +4,68 @@ #include "cuda_runtime.h" #include "driver_types.h" #include "cublas_v2.h" -#define CUBLAS_SAFE_SYNC_CALL(call) \ + +#define CUBLAS_SAFE_SYNC_CALL_RET(call, status) \ + do { \ + cublasStatus_t err = (call); \ + if (err != CUBLAS_STATUS_SUCCESS) \ + { \ + NERV_SET_STATUS(status, MAT_CUBLAS_ERR, cublasGetErrorString(err)); \ + return 0; \ + } \ + cudaDeviceSynchronize(); \ + } while (0) + +#define CUBLAS_SAFE_SYNC_CALL(call, status) \ do { \ cublasStatus_t err = (call); \ if (err != CUBLAS_STATUS_SUCCESS) \ - nerv_error(L, "cumatrix cublas error: %s at %s:%d", \ - cublasGetErrorString(err), __FILE__, __LINE__); \ + NERV_EXIT_STATUS(status, MAT_CUBLAS_ERR, cublasGetErrorString(err)); \ cudaDeviceSynchronize(); \ } while (0) -#define CUDA_SAFE_CALL(call) \ +#define CUDA_SAFE_CALL_RET(call, status) \ + do { \ + cudaError_t err = (call); \ + if (err != cudaSuccess) \ + { \ + NERV_SET_STATUS(status, MAT_CUDA_ERR, cudaGetErrorString(err)); \ + return 0; \ + } \ + } while (0) + +#define CUDA_SAFE_CALL(call, status) \ do { \ cudaError_t err = (call); \ if (err != cudaSuccess) \ - nerv_error(L, "cumatrix CUDA error: %s at %s:%d", \ - cudaGetErrorString(err), __FILE__, __LINE__); \ + NERV_EXIT_STATUS(status, MAT_CUDA_ERR, cudaGetErrorString(err)); \ + } while (0) + +#define CUDA_SAFE_SYNC_CALL(call, status) \ + do { \ + CUDA_SAFE_CALL(call, status); \ + cudaDeviceSynchronize(); \ } while (0) -#define CUDA_SAFE_SYNC_CALL(call) \ +#define CUDA_SAFE_SYNC_CALL_RET(call, status) \ do { \ - CUDA_SAFE_CALL(call); \ + CUDA_SAFE_CALL_RET(call, status); \ cudaDeviceSynchronize(); \ } while (0) -#define CHECK_SAME_DIMENSION(a, b) \ +#define CHECK_SAME_DIMENSION(a, b, status) \ + do { \ + if (!(a->nrow == b->nrow && a->ncol == b->ncol)) \ + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); \ + } while (0) + +#define CHECK_SAME_DIMENSION_RET(a, b, status) \ do { \ if (!(a->nrow == b->nrow && a->ncol == b->ncol)) \ - nerv_error(L, "matrices should be of the same dimension"); \ + { \ + NERV_SET_STATUS(status, MAT_MISMATCH_DIM, 0); \ + return 0; \ + } \ } while (0) static const char *cublasGetErrorString(cublasStatus_t err) { diff --git a/nerv/matrix/cukernel.cu b/nerv/lib/matrix/cukernel.cu index a19030a..a19030a 100644 --- a/nerv/matrix/cukernel.cu +++ b/nerv/lib/matrix/cukernel.cu diff --git a/nerv/matrix/cukernel.h b/nerv/lib/matrix/cukernel.h index 8a1494f..8a1494f 100644 --- a/nerv/matrix/cukernel.h +++ b/nerv/lib/matrix/cukernel.h diff --git a/nerv/lib/matrix/cumatrix.c b/nerv/lib/matrix/cumatrix.c new file mode 100644 index 0000000..9641197 --- /dev/null +++ b/nerv/lib/matrix/cumatrix.c @@ -0,0 +1,69 @@ +#define NERV_GENERIC_CUMATRIX +#include "../../common.h" +#include "cuda_helper.h" +#include <string.h> +#define PROFILE_HASHMAP_SIZE 123457 +static cublasHandle_t cublas_handle; +static cudaEvent_t profile_start, profile_stop; +static HashMap *profile; + +void nerv_cumatrix_print_profile() { + size_t i; + fprintf(stderr, "*** [nerv cumatrix profile] **\n"); + for (i = 0; i < profile->size; i++) + { + HashNode *ptr; + for (ptr = profile->bucket[i]; ptr; ptr = ptr->next) + { + fprintf(stderr, "%s:\t%.6f\n", ptr->key, *(float *)ptr->val); + } + } +} + +void nerv_cumatrix_clear_profile() { + hashmap_clear(profile); +} + +void accu_profile(const char *name, float delta) { + float *val = hashmap_getval(profile, name); + if (!val) + { + val = malloc(sizeof(float)); + *val = 0; + hashmap_setval(profile, name, val); + } + *val += delta; +} + +void nerv_cumatrix_init() { + cublasCreate(&cublas_handle); + cudaEventCreate(&profile_start); + cudaEventCreate(&profile_stop); + profile = hashmap_create(PROFILE_HASHMAP_SIZE, bkdr_hash, strcmp); +} + +#define MATRIX_USE_FLOAT +#define cuda_matrix_(NAME) cuda_matrix_float_##NAME +#define nerv_matrix_(NAME) nerv_matrix_cuda_float_##NAME +#define cudak_(NAME) cudak_float_ ## NAME +#define NERV_CUBLAS_(NAME) cublasS##NAME +#define MATRIX_CUMATRIX_HOST_TNAME nerv_matrix_host_float_tname +#include "generic/cumatrix.c" +#undef NERV_CUBLAS_ +#undef cudak_ +#undef nerv_matrix_ +#undef cuda_matrix_ +#undef MATRIX_USE_FLOAT +#undef MATRIX_ELEM +#undef MATRIX_ELEM_PTR +#undef MATRIX_ELEM_FMT +#undef MATRIX_ELEM_WRITE_FMT +#undef MATRIX_CUMATRIX_HOST_TNAME + +#define MATRIX_USE_DOUBLE +#define cuda_matrix_(NAME) cuda_matrix_double_##NAME +#define nerv_matrix_(NAME) nerv_matrix_cuda_double_##NAME +#define cudak_(NAME) cudak_double_ ## NAME +#define NERV_CUBLAS_(NAME) cublasD##NAME +#define MATRIX_CUMATRIX_HOST_TNAME nerv_matrix_host_double_tname +#include "generic/cumatrix.c" diff --git a/nerv/lib/matrix/cumatrix.h b/nerv/lib/matrix/cumatrix.h new file mode 100644 index 0000000..9f71507 --- /dev/null +++ b/nerv/lib/matrix/cumatrix.h @@ -0,0 +1,6 @@ +#ifndef NERV_CUMATRIX_H +#define NERV_CUMATRIX_H +void nerv_cumatrix_print_profile(); +void nerv_cumatrix_clear_profile(); +void nerv_cumatrix_init(); +#endif diff --git a/nerv/lib/matrix/generic/cukernel.cu b/nerv/lib/matrix/generic/cukernel.cu new file mode 100644 index 0000000..6111193 --- /dev/null +++ b/nerv/lib/matrix/generic/cukernel.cu @@ -0,0 +1,571 @@ +#ifdef NERV_GENERIC_CUKERNEL +#include <assert.h> +#include <stdio.h> +#include "../matrix.h" +#include "cuda.h" +#include "float.h" +#define CUDA_THREADS_N 16 +#define CUDA_THREADS_NN ((CUDA_THREADS_N) * (CUDA_THREADS_N)) +#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) +__global__ void cudak_(log_elem)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + MATRIX_ELEM tmp; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + tmp = a[idx]; + if(tmp < FLT_MIN) tmp = FLT_MIN; + b[idx] = log(tmp); +} + +__global__ void cudak_(mul_elem)(const MATRIX_ELEM *a, const MATRIX_ELEM *b, + MATRIX_ELEM *c, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + c[idx] = a[idx] * b[idx]; +} + +__global__ void cudak_(sigmoid)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + b[idx] = 1.0 / (1.0 + exp(-a[idx])); +} + +__global__ void cudak_(sigmoid_grad)(const MATRIX_ELEM *output, + const MATRIX_ELEM *err, + MATRIX_ELEM *nerr, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + nerr[idx] = output[idx] * (1.0 - output[idx]) * err[idx]; +} + +__global__ void cudak_(softmax_final)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + const MATRIX_ELEM *max, const MATRIX_ELEM *deno, + int nrow, int ncol, int stride, int mstride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + b[idx] = exp(a[idx] - max[0 + i * mstride]) / deno[0 + i * mstride]; +} + +__global__ void cudak_(block_reduce_rowsum)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int j = blockIdx.x * blockDim.x + threadIdx.x; + cudak_(arr)[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : 0; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + cudak_(arr)[threadIdx.x] += cudak_(arr)[threadIdx.x + offset]; + __syncthreads(); + } + if (threadIdx.x == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_colsum)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int i = blockIdx.y * blockDim.y + threadIdx.y; + cudak_(arr)[threadIdx.y] = i < n ? input[blockIdx.x + istride * i] : 0; + __syncthreads(); + for (int offset = blockDim.y >> 1; offset; offset >>= 1) + { + if (threadIdx.y < offset) + cudak_(arr)[threadIdx.y] += cudak_(arr)[threadIdx.y + offset]; + __syncthreads(); + } + if (threadIdx.y == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_colsame)(const MATRIX_ELEM *input, + const MATRIX_ELEM *ref_input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int i = blockIdx.y * blockDim.y + threadIdx.y; + cudak_(arr)[threadIdx.y] = (i < n && input[blockIdx.x + istride * i] == \ + ref_input[blockIdx.x + istride * i]) ? 1.0 : 0; + __syncthreads(); + for (int offset = blockDim.y >> 1; offset; offset >>= 1) + { + if (threadIdx.y < offset) + cudak_(arr)[threadIdx.y] += cudak_(arr)[threadIdx.y + offset]; + __syncthreads(); + } + if (threadIdx.y == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_softmax_rowsum)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const MATRIX_ELEM *max, + const int istride, const int ostride, + const int mstride, const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int j = blockIdx.x * blockDim.x + threadIdx.x; + cudak_(arr)[threadIdx.x] = j < n ? exp(input[j + istride * blockIdx.y] - \ + max[0 + mstride * blockIdx.y]) : 0; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + cudak_(arr)[threadIdx.x] += cudak_(arr)[threadIdx.x + offset]; + __syncthreads(); + } + if (threadIdx.x == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_rowmax)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int j = blockIdx.x * blockDim.x + threadIdx.x; + cudak_(arr)[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : -FLT_MAX; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + { + MATRIX_ELEM l = cudak_(arr)[threadIdx.x], + r = cudak_(arr)[threadIdx.x + offset]; + if (r > l) + cudak_(arr)[threadIdx.x] = r; + } + __syncthreads(); + } + if (threadIdx.x == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_rowmax_idx)(const MATRIX_ELEM *input, + const MATRIX_ELEM *idx_input, + MATRIX_ELEM *output, + MATRIX_ELEM *idx_output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + MATRIX_ELEM *arr_val = cudak_(arr); + MATRIX_ELEM *arr_idx = arr_val + blockDim.x; + int j = blockIdx.x * blockDim.x + threadIdx.x; + arr_val[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : -FLT_MAX; + arr_idx[threadIdx.x] = j < n ? idx_input[j + istride * blockIdx.y] : 0; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + { + MATRIX_ELEM l = arr_val[threadIdx.x], + r = arr_val[threadIdx.x + offset]; + if (r > l) + { + arr_val[threadIdx.x] = r; + arr_idx[threadIdx.x] = arr_idx[threadIdx.x + offset]; + } + } + __syncthreads(); + } + if (threadIdx.x == 0) + { + output[blockIdx.x + ostride * blockIdx.y] = arr_val[0]; + idx_output[blockIdx.x + ostride * blockIdx.y] = arr_idx[0]; + } +} + +__global__ void cudak_(add_row)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, int stride, double beta) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] += beta * a[j]; +} + +__global__ void cudak_(fill)(MATRIX_ELEM *a, + int nrow, int ncol, int stride, double val) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + a[j + i * stride] = val; +} + +__global__ void cudak_(expand_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int enrow, int encol, + int stride, int estride, + int context) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + int ridx; + if (i >= enrow || j >= encol) return; + ridx = i + j / ncol - context; + if (ridx < 0) ridx = 0; + else if (ridx >= nrow) ridx = nrow - 1; + b[j + i * estride] = a[j % ncol + ridx * stride]; +} + +__global__ void cudak_(rearrange_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int stride, int step, int orig_dim) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] = a[j / step + (j % step) * orig_dim + i * stride]; +} + +__global__ void cudak_(scale_rows_by_col)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int astride, int bstride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * bstride] *= a[i * astride]; +} + +__global__ void cudak_(scale_rows_by_row)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] *= a[j]; +} + +__global__ void cudak_(decompress)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int stride_a, int stride_b) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[lrintf(a[j + i * stride_a]) + i * stride_b] = 1.0; +} + +__global__ void cudak_(gen_col_idx)(MATRIX_ELEM *b, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] = j; +} + +extern "C" { +#include "../cukernel.h" + void cudak_(cuda_log_elem)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(log_elem)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_mul_elem)(const Matrix *a, const Matrix *b, + Matrix *c) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(mul_elem)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + MATRIX_ELEM_PTR(c), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_sigmoid)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(sigmoid)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, + b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_sigmoid_grad)(const Matrix *output, + const Matrix *err, Matrix *nerr) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(nerr->ncol, threadsPerBlock.x), + CEIL_DIV(nerr->nrow, threadsPerBlock.y)); + cudak_(sigmoid_grad)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(output), MATRIX_ELEM_PTR(err), + MATRIX_ELEM_PTR(nerr), + nerr->nrow, nerr->ncol, + nerr->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_rowsum)(const Matrix *a, Matrix *b) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudak_(block_reduce_rowsum)<<<grid, block, block.x * sizeof(MATRIX_ELEM)>>> \ + (MATRIX_ELEM_PTR(a), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowsum)<<<grid, block, block.x * sizeof(MATRIX_ELEM)>>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_colsame)(const Matrix *a, const Matrix *ref, Matrix *b) { + dim3 block(1, CUDA_THREADS_NN); + int nrow = a->nrow; + int blocks_per_col = CEIL_DIV(nrow, block.y); + dim3 grid(a->ncol, blocks_per_col); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, a->ncol * sizeof(MATRIX_ELEM), blocks_per_col); + cudak_(block_reduce_colsame)<<<grid, block, block.y * sizeof(MATRIX_ELEM)>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(ref), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + nrow); + nrow = blocks_per_col; + assert((unsigned long)nrow <= block.y); + grid.y = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_colsum)<<<grid, block, block.y * sizeof(MATRIX_ELEM)>>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + nrow); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_colsum)(const Matrix *a, Matrix *b) { + dim3 block(1, CUDA_THREADS_NN); + int nrow = a->nrow; + int blocks_per_col = CEIL_DIV(nrow, block.y); + dim3 grid(a->ncol, blocks_per_col); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, a->ncol * sizeof(MATRIX_ELEM), blocks_per_col); + cudak_(block_reduce_colsum)<<<grid, block, block.y * sizeof(MATRIX_ELEM)>>> \ + (MATRIX_ELEM_PTR(a), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + nrow); + nrow = blocks_per_col; + assert((unsigned long)nrow <= block.y); + grid.y = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_colsum)<<<grid, block, block.y * sizeof(MATRIX_ELEM)>>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + nrow); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_softmax_final)(const Matrix *a, const Matrix *max, + const Matrix *deno, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(softmax_final)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + MATRIX_ELEM_PTR(max), MATRIX_ELEM_PTR(deno), + b->nrow, b->ncol, + b->stride / sizeof(MATRIX_ELEM), + max->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_softmax_denominator)(const Matrix *a, const Matrix *max, Matrix *b) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *res; + size_t stride; + assert(max->ncol == 1); + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudak_(block_reduce_softmax_rowsum) \ + <<<grid, block, block.x * sizeof(MATRIX_ELEM)>>> \ + (MATRIX_ELEM_PTR(a), res, MATRIX_ELEM_PTR(max), + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + max->stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowsum) \ + <<<grid, block, block.x * sizeof(MATRIX_ELEM)>>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_rowmax)(const Matrix *a, Matrix *b) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudak_(block_reduce_rowmax)<<<grid, block, block.x * sizeof(MATRIX_ELEM)>>> \ + (MATRIX_ELEM_PTR(a), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowmax)<<<grid, block, block.x * sizeof(MATRIX_ELEM)>>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_rowmax_idx)(const Matrix *a, Matrix *b, Matrix *b_idx) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *a_idx, *res, *res_idx; + size_t stride; + cudaMallocPitch(&a_idx, &stride, a->stride, a->nrow); + cudak_(gen_col_idx)<<<grid, block>>>(a_idx, a->nrow, ncol, stride / sizeof(MATRIX_ELEM)); + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudaMallocPitch(&res_idx, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudaStreamSynchronize(0); + cudak_(block_reduce_rowmax_idx)<<<grid, block, + 2 * block.x * sizeof(MATRIX_ELEM)>>> \ + (MATRIX_ELEM_PTR(a), a_idx, res, res_idx, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowmax_idx)<<<grid, block, + 2 * block.x * sizeof(MATRIX_ELEM)>>> \ + (res, res_idx, MATRIX_ELEM_PTR(b), MATRIX_ELEM_PTR(b_idx), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(a_idx); + cudaFree(res); + cudaFree(res_idx); + } + + /* in-place calc */ + void cudak_(cuda_add_row)(const Matrix *a, Matrix *b, double beta) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(add_row)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, + b->stride / sizeof(MATRIX_ELEM), beta); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_fill)(Matrix *a, double val) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(a->ncol, threadsPerBlock.x), + CEIL_DIV(a->nrow, threadsPerBlock.y)); + cudak_(fill)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), a->nrow, a->ncol, + a->stride / sizeof(MATRIX_ELEM), val); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_expand_frm)(const Matrix *a, Matrix *b, int context) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(expand_frm)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + a->nrow, a->ncol, + b->nrow, b->ncol, + a->stride / sizeof(MATRIX_ELEM), + b->stride / sizeof(MATRIX_ELEM), + context); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_rearrange_frm)(const Matrix *a, Matrix *b, int step) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(rearrange_frm)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM), + step, b->ncol / step); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_scale_rows_by_col)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(scale_rows_by_col)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, + a->stride / sizeof(MATRIX_ELEM), + b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_scale_rows_by_row)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(scale_rows_by_row)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_decompress)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(1, CUDA_THREADS_NN); + dim3 numBlocks(1, CEIL_DIV(a->nrow, threadsPerBlock.y)); + cudak_(decompress)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + a->nrow, a->ncol, + a->stride / sizeof(MATRIX_ELEM), + b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } +} +#endif diff --git a/nerv/lib/matrix/generic/cumatrix.c b/nerv/lib/matrix/generic/cumatrix.c new file mode 100644 index 0000000..11aacec --- /dev/null +++ b/nerv/lib/matrix/generic/cumatrix.c @@ -0,0 +1,403 @@ +#ifdef NERV_GENERIC_CUMATRIX +#include "matrix.h" +#include "elem_type.h" +#define MATRIX_DATA_FREE(ptr, status) cuda_matrix_(free)(ptr, status) +#define MATRIX_DATA_ALLOC(dptr, stride, width, height, status) \ + cuda_matrix_(alloc)(dptr, stride, width, height, status) + +#define NERV_GENERIC_MATRIX +#define NERV_GENERIC_CUKERNEL +#include "../../../common.h" +#include "../cukernel.h" +#include "../cuda_helper.h" + +void nerv_matrix_(add)(Matrix *c, const Matrix *a, const Matrix *b, + MATRIX_ELEM alpha, MATRIX_ELEM beta, + Status *status) { + CHECK_SAME_DIMENSION(a, b, status); + CHECK_SAME_DIMENSION(a, c, status); + PROFILE_START + CUBLAS_SAFE_SYNC_CALL( + NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, + a->ncol, a->nrow, + &alpha, + MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), + &beta, + MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM), + MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM)), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(mul)(Matrix *c, const Matrix *a, const Matrix *b, + MATRIX_ELEM alpha, MATRIX_ELEM beta, + int ta, int tb, Status *status) { +#define SWAP(a, b) \ + do { int t = (a); (a) = (b); (b) = t; } while (0) + + int am = a->nrow, an = a->ncol; + int bm = b->nrow, bn = b->ncol; + if (ta == CUBLAS_OP_T) SWAP(am, an); + if (tb == CUBLAS_OP_T) SWAP(bm, bn); + if (an != bm) + NERV_EXIT_STATUS(status, MAT_WRONG_MULT_DIM, 0); + /* Because matrix in Nerv is row-major, here b comes first */ + PROFILE_START + CUBLAS_SAFE_SYNC_CALL( + NERV_CUBLAS_(gemm)(cublas_handle, tb, ta, + bn, am, bm, + &alpha, + MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM), + MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), + &beta, + MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM)), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(sigmoid)(Matrix *a, const Matrix *b, Status *status) { + CHECK_SAME_DIMENSION(a, b, status); + PROFILE_START + cudak_(cuda_sigmoid)(b, a); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(sigmoid_grad)(Matrix *nerr, const Matrix *err, + const Matrix *output, Status *status) { + CHECK_SAME_DIMENSION(nerr, err, status); + CHECK_SAME_DIMENSION(nerr, output, status); + PROFILE_START + cudak_(cuda_sigmoid_grad)(output, err, nerr); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +Matrix *nerv_matrix_(softmax)(Matrix *b, const Matrix *a, Status *status) { + Matrix *max, *max_idx; + Matrix *dno; + CHECK_SAME_DIMENSION_RET(a, b, status); + max = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + return NULL; + max_idx = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + { + nerv_matrix_(destroy)(max, status); + return NULL; + } + dno = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + { /* FIXME: destroy may also fail? */ + nerv_matrix_(destroy)(max, status); + nerv_matrix_(destroy)(max_idx, status); + return NULL; + } + PROFILE_START + cudak_(cuda_rowmax_idx)(a, max, max_idx); + cudak_(cuda_softmax_denominator)(a, max, dno); + cudak_(cuda_softmax_final)(a, max, dno, b); + PROFILE_STOP + nerv_matrix_(destroy)(max, status); + nerv_matrix_(destroy)(dno, status); + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return max_idx; +} + +Matrix *nerv_matrix_(rowsum)(Matrix *a, Status *status) { + Matrix *b = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + return NULL; + PROFILE_START + cudak_(cuda_rowsum)(a, b); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return b; +} + +Matrix *nerv_matrix_(colsum)(Matrix *a, Status *status) { + Matrix *b = nerv_matrix_(create)(1, a->ncol, status); + if (status->err_code != MAT_NORMAL) + return NULL; + PROFILE_START + cudak_(cuda_colsum)(a, b); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return b; +} + +Matrix *nerv_matrix_(colsame)(Matrix *a, const Matrix *ref, + Status *status) { + Matrix *b = nerv_matrix_(create)(1, a->ncol, status); + if (status->err_code != MAT_NORMAL) + return NULL; + CHECK_SAME_DIMENSION_RET(a, ref, status); + PROFILE_START + cudak_(cuda_colsame)(a, ref, b); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return b; +} + +Matrix *nerv_matrix_(rowmax)(Matrix *a, Status *status) { + Matrix *b = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + return NULL; + PROFILE_START + cudak_(cuda_rowmax)(a, b); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return b; +} + +void nerv_matrix_(rowmax_idx)(Matrix *a, Matrix **b, Matrix **idx, + Status *status) { + *b = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + return; + *idx = nerv_matrix_(create)(a->nrow, 1, status); + if (status->err_code != MAT_NORMAL) + { + /* FIXME: destroy may also fail? */ + nerv_matrix_(destroy)(*b, status); + return; + } + PROFILE_START + cudak_(cuda_rowmax_idx)(a, *b, *idx); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(add_row)(Matrix *b, const Matrix *a, double beta, + Status *status) { + if (a->ncol != b->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + if (a->nrow != 1) + NERV_EXIT_STATUS(status, MAT_ROW_VECTOR_EXP, 0); + PROFILE_START + cudak_(cuda_add_row)(a, b, beta); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(fill)(Matrix *self, double val, Status *status) { + PROFILE_START + cudak_(cuda_fill)(self, val); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(copy_fromd)(Matrix *a, const Matrix *b, + int a_begin, int b_begin, int b_end, + Status *status) { + if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow && + a_begin + b_end - b_begin <= a->nrow)) + NERV_EXIT_STATUS(status, MAT_INVALID_COPY_INTERVAL, 0); + if (a->ncol != b->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + PROFILE_START + CUDA_SAFE_SYNC_CALL( + cudaMemcpy2D(MATRIX_ROW_PTR(a, a_begin), a->stride, + MATRIX_ROW_PTR(b, b_begin), b->stride, + sizeof(MATRIX_ELEM) * b->ncol, b_end - b_begin, + cudaMemcpyDeviceToDevice), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(copy_fromh)(Matrix *a, const Matrix *b, + int a_begin, int b_begin, int b_end, + Status *status) { + if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow && + a_begin + b_end - b_begin <= a->nrow)) + NERV_EXIT_STATUS(status, MAT_INVALID_COPY_INTERVAL, 0); + if (a->ncol != b->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + PROFILE_START + CUDA_SAFE_SYNC_CALL( + cudaMemcpy2D(MATRIX_ROW_PTR(a, a_begin), a->stride, + MATRIX_ROW_PTR(b, b_begin), b->stride, + sizeof(MATRIX_ELEM) * b->ncol, b_end - b_begin, + cudaMemcpyHostToDevice), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(copy_toh)(Matrix *a, const Matrix *b, + int a_begin, int a_end, int b_begin, + Status *status) { + if (!(0 <= a_begin && a_begin < a_end && a_end <= a->nrow && + b_begin + a_end - a_begin <= b->nrow)) + NERV_EXIT_STATUS(status, MAT_INVALID_COPY_INTERVAL, 0); + if (b->ncol != a->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + PROFILE_START + CUDA_SAFE_SYNC_CALL( + cudaMemcpy2D(MATRIX_ROW_PTR(b, b_begin), b->stride, + MATRIX_ROW_PTR(a, a_begin), a->stride, + sizeof(MATRIX_ELEM) * a->ncol, a_end - a_begin, + cudaMemcpyDeviceToHost), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +Matrix *nerv_matrix_(trans)(Matrix *a, Status *status) { + MATRIX_ELEM alpha = 1, beta = 0; + Matrix *b = nerv_matrix_(create)(a->ncol, a->nrow, status); + if (status->err_code != MAT_NORMAL) + return NULL; + /* FIXME: possible memory leak when lua error is raised */ + PROFILE_START + CUBLAS_SAFE_SYNC_CALL_RET( + NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_T, + a->nrow, a->ncol, + &alpha, + MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), + &beta, + MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), + MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM)), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return b; +} + +void nerv_matrix_(mul_elem)(Matrix *c, const Matrix *a, const Matrix *b, + Status *status) { + CHECK_SAME_DIMENSION(a, b, status); + CHECK_SAME_DIMENSION(a, c, status); + PROFILE_START + cudak_(cuda_mul_elem)(a, b, c); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(log_elem)(Matrix *b, const Matrix *a, Status *status) { + CHECK_SAME_DIMENSION(a, b, status); + PROFILE_START + cudak_(cuda_log_elem)(a, b); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +Matrix *nerv_matrix_(decompress)(const Matrix *a, int orig_col, Status *status) { + Matrix *b; + if (a->ncol != 1) + { + NERV_SET_STATUS(status, MAT_COL_VECTOR_EXP, 0); + return NULL; + } + b = nerv_matrix_(create)(a->nrow, orig_col, status); + if (status->err_code != MAT_NORMAL) + return NULL; + PROFILE_START + cudak_(cuda_fill)(b, 0.0); + cudak_(cuda_decompress)(a, b); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return b; +} + +void nerv_matrix_(copy_rows_fromh_by_idx)(Matrix *a, const Matrix *b, + const Matrix *idx, int b_begin, Status *status) { + long nrow = a->nrow; + if (!(0 <= b_begin && b_begin + nrow <= idx->ncol)) + NERV_EXIT_STATUS(status, MAT_INVALID_COPY_INTERVAL, 0); + long *idx_ptr = idx->data.i; + int i; + if (idx->nrow != 1) + NERV_EXIT_STATUS(status, MAT_IDX_VECTOR_EXP, 0); + if (a->ncol != b->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t) * nrow); + for (i = 0; i < nrow; i++) + { + int src_row = idx_ptr[b_begin + i]; + if (!(0 <= src_row && src_row < b->nrow)) + NERV_EXIT_STATUS(status, MAT_INVALID_IDX, 0); + CUDA_SAFE_CALL(cudaStreamCreate(streams + i), status); + CUDA_SAFE_CALL(cudaMemcpyAsync(MATRIX_ROW_PTR(a, i), + MATRIX_ROW_PTR(b, src_row), + b->stride, + cudaMemcpyHostToDevice, streams[i]), status); + } + for (i = 0; i < nrow; i++) + { + CUDA_SAFE_CALL(cudaStreamSynchronize(streams[i]), status); + CUDA_SAFE_CALL(cudaStreamDestroy(streams[i]), status); + } + free(streams); + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(expand_frm)(Matrix *a, const Matrix *b, + int context, Status *status) { + if (a->nrow != b->nrow) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + if (a->ncol != b->ncol * (context * 2 + 1)) + NERV_EXIT_STATUS(status, MAT_GENERAL_ERR, + "the width should be 2 * context + 1"); + PROFILE_START + cudak_(cuda_expand_frm)(b, a, context); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(rearrange_frm)(Matrix *a, const Matrix *b, + int step, Status *status) { + CHECK_SAME_DIMENSION(a, b, status); + if (b->ncol % step) + NERV_EXIT_STATUS(status, MAT_GENERAL_ERR, + "the dimension of columns is not divisible by step"); + PROFILE_START + cudak_(cuda_rearrange_frm)(b, a, step); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(scale_rows_by_col)(Matrix *a, const Matrix *b, + Status *status) { + if (a->nrow != b->nrow) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + if (b->ncol != 1) + NERV_EXIT_STATUS(status, MAT_COL_VECTOR_EXP, 0); + PROFILE_START + cudak_(cuda_scale_rows_by_col)(b, a); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(scale_rows_by_row)(Matrix *a, const Matrix *b, + Status *status) { + if (a->ncol != b->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + if (b->nrow != 1) + NERV_EXIT_STATUS(status, MAT_ROW_VECTOR_EXP, 0); + PROFILE_START + cudak_(cuda_scale_rows_by_row)(b, a); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +static void cuda_matrix_(free)(MATRIX_ELEM *ptr, Status *status) { + CUDA_SAFE_SYNC_CALL(cudaFree(ptr), status); + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +static void cuda_matrix_(alloc)(MATRIX_ELEM **dptr, + size_t *stride, long width, long height, + Status *status) { + PROFILE_START + CUDA_SAFE_SYNC_CALL(cudaMallocPitch((void **)dptr, stride, width, height), + status); + PROFILE_STOP + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +#include "matrix.c" +#endif diff --git a/nerv/lib/matrix/generic/cumatrix.h b/nerv/lib/matrix/generic/cumatrix.h new file mode 100644 index 0000000..9a4f87e --- /dev/null +++ b/nerv/lib/matrix/generic/cumatrix.h @@ -0,0 +1,50 @@ +#include "../../../common.h" + +void nerv_matrix_(add)(Matrix *c, const Matrix *a, const Matrix *b, + MATRIX_ELEM alpha, MATRIX_ELEM beta, + Status *status); +void nerv_matrix_(mul)(Matrix *c, const Matrix *a, const Matrix *b, + MATRIX_ELEM alpha, MATRIX_ELEM beta, + int ta, int tb, Status *status); +void nerv_matrix_(sigmoid)(Matrix *a, const Matrix *b, Status *status); +void nerv_matrix_(sigmoid_grad)(Matrix *nerr, const Matrix *err, + const Matrix *output, Status *status); + +Matrix *nerv_matrix_(softmax)(Matrix *b, const Matrix *a, Status *status); +Matrix *nerv_matrix_(rowsum)(Matrix *a, Status *status); +Matrix *nerv_matrix_(colsum)(Matrix *a, Status *status); +Matrix *nerv_matrix_(colsame)(Matrix *a, const Matrix *ref, + Status *status); +Matrix *nerv_matrix_(rowmax)(Matrix *a, Status *status); +void nerv_matrix_(rowmax_idx)(Matrix *a, Matrix **b, Matrix **idx, + Status *status); +void nerv_matrix_(add_row)(Matrix *b, const Matrix *a, double beta, + Status *status); +void nerv_matrix_(fill)(Matrix *self, double val, Status *status); +void nerv_matrix_(copy_fromd)(Matrix *a, const Matrix *b, + int a_begin, int b_begin, int b_end, + Status *status); +void nerv_matrix_(copy_fromh)(Matrix *a, const Matrix *b, + int a_begin, int b_begin, int b_end, + Status *status); +void nerv_matrix_(copy_toh)(Matrix *a, const Matrix *b, + int a_begin, int a_end, int b_begin, + Status *status); +Matrix *nerv_matrix_(trans)(Matrix *a, Status *status); +void nerv_matrix_(mul_elem)(Matrix *c, const Matrix *a, const Matrix *b, + Status *status); + +void nerv_matrix_(log_elem)(Matrix *b, const Matrix *a, Status *status); + +Matrix *nerv_matrix_(decompress)(const Matrix *a, int orig_col, Status *status); +void nerv_matrix_(copy_rows_fromh_by_idx)(Matrix *a, const Matrix *b, + const Matrix *idx, int b_begin, Status *status); + +void nerv_matrix_(expand_frm)(Matrix *a, const Matrix *b, + int context, Status *status); +void nerv_matrix_(rearrange_frm)(Matrix *a, const Matrix *b, + int step, Status *status); +void nerv_matrix_(scale_rows_by_col)(Matrix *a, const Matrix *b, + Status *status); +void nerv_matrix_(scale_rows_by_row)(Matrix *a, const Matrix *b, + Status *status); diff --git a/nerv/lib/matrix/generic/elem_type.h b/nerv/lib/matrix/generic/elem_type.h new file mode 100644 index 0000000..bffe940 --- /dev/null +++ b/nerv/lib/matrix/generic/elem_type.h @@ -0,0 +1,22 @@ +#ifdef MATRIX_USE_FLOAT + +#define MATRIX_ELEM float +#define MATRIX_ELEM_FMT "%f" +#define MATRIX_ELEM_WRITE_FMT "%.8f" +#define MATRIX_ELEM_PTR(self) ((self)->data.f) + +#elif defined(MATRIX_USE_DOUBLE) + +#define MATRIX_ELEM double +#define MATRIX_ELEM_FMT "%lf" +#define MATRIX_ELEM_WRITE_FMT "%.8lf" +#define MATRIX_ELEM_PTR(self) ((self)->data.d) + +#elif defined(MATRIX_USE_INT) + +#define MATRIX_ELEM long +#define MATRIX_ELEM_FMT "%ld" +#define MATRIX_ELEM_WRITE_FMT "%ld" +#define MATRIX_ELEM_PTR(self) ((self)->data.i) + +#endif diff --git a/nerv/lib/matrix/generic/matrix.c b/nerv/lib/matrix/generic/matrix.c new file mode 100644 index 0000000..91577e1 --- /dev/null +++ b/nerv/lib/matrix/generic/matrix.c @@ -0,0 +1,57 @@ +#ifdef NERV_GENERIC_MATRIX +#include "../../../common.h" +#include "matrix.h" +/* FIXME: malloc failure detection */ + +static void nerv_matrix_(data_free)(Matrix *self, Status *status) { + assert(*self->data_ref > 0); + if (--(*self->data_ref) == 0) + { + /* free matrix data */ + MATRIX_DATA_FREE(MATRIX_ELEM_PTR(self), status); + free(self->data_ref); + free(self); + } + else NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +static void nerv_matrix_(data_retain)(Matrix *self) { + (*self->data_ref)++; +} + +Matrix *nerv_matrix_(create)(long nrow, long ncol, Status *status) { + Matrix *self = (Matrix *)malloc(sizeof(Matrix)); + self->nrow = nrow; + self->ncol = ncol; + self->nmax = self->nrow * self->ncol; + MATRIX_DATA_ALLOC(&MATRIX_ELEM_PTR(self), &self->stride, + sizeof(MATRIX_ELEM) * self->ncol, self->nrow, + status); + if (status->err_code != MAT_NORMAL) + { + free(self); + return NULL; + } + self->data_ref = (long *)malloc(sizeof(long)); + *self->data_ref = 0; + nerv_matrix_(data_retain)(self); + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return self; +} + +void nerv_matrix_(destroy)(Matrix *self, Status *status) { + nerv_matrix_(data_free)(self, status); +} + +Matrix *nerv_matrix_(getrow)(Matrix *self, int row) { + Matrix *prow = (Matrix *)malloc(sizeof(Matrix)); + prow->ncol = self->ncol; + prow->nrow = 1; + prow->stride = self->stride; + prow->nmax = prow->ncol; + MATRIX_ELEM_PTR(prow) = MATRIX_ROW_PTR(self, row); + prow->data_ref = self->data_ref; + nerv_matrix_(data_retain)(prow); + return prow; +} +#endif diff --git a/nerv/lib/matrix/generic/matrix.h b/nerv/lib/matrix/generic/matrix.h new file mode 100644 index 0000000..9d44e6d --- /dev/null +++ b/nerv/lib/matrix/generic/matrix.h @@ -0,0 +1,4 @@ +#include "../matrix.h" +Matrix *nerv_matrix_(create)(long nrow, long ncol, Status *status); +void nerv_matrix_(destroy)(Matrix *self, Status *status); +Matrix *nerv_matrix_(getrow)(Matrix *self, int row); diff --git a/nerv/lib/matrix/generic/mmatrix.c b/nerv/lib/matrix/generic/mmatrix.c new file mode 100644 index 0000000..e3d1f93 --- /dev/null +++ b/nerv/lib/matrix/generic/mmatrix.c @@ -0,0 +1,82 @@ +#ifdef NERV_GENERIC_MMATRIX +#include "matrix.h" +#include "elem_type.h" +#define MATRIX_DATA_FREE(ptr, status) host_matrix_(free)(ptr, status) +#define MATRIX_DATA_ALLOC(dptr, stride, width, height, status) \ + host_matrix_(alloc)(dptr, stride, width, height, status) +#define NERV_GENERIC_MATRIX +#include "../../../common.h" +#include "../../io/chunk_file.h" +#include "string.h" + +static void host_matrix_(free)(MATRIX_ELEM *ptr, Status *status) { + free(ptr); + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +static void host_matrix_(alloc)(MATRIX_ELEM **dptr, size_t *stride, + long width, long height, Status *status) { + if ((*dptr = (MATRIX_ELEM *)malloc(width * height)) == NULL) + NERV_EXIT_STATUS(status, MAT_INSUF_MEM, 0); + *stride = width; + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +#include "matrix.c" +Matrix *nerv_matrix_(load)(ChunkData *cdp, Status *status) { + int i, j; + long nrow, ncol; + FILE *fp = cdp->fp; + Matrix *self; + if (fscanf(fp, "%ld %ld", &nrow, &ncol) != 2) + NERV_EXIT_STATUS(status, MAT_INVALID_FORMAT, 0); + self = nerv_matrix_(create)(nrow, ncol, status); + if (status->err_code != MAT_NORMAL) + return NULL; + for (i = 0; i < nrow; i++) + { + MATRIX_ELEM *row = MATRIX_ROW_PTR(self, i); + for (j = 0; j < ncol; j++) + if (fscanf(fp, MATRIX_ELEM_FMT, row + j) != 1) + { + free(self); + NERV_EXIT_STATUS(status, MAT_INVALID_FORMAT, 0); + } + } + NERV_SET_STATUS(status, MAT_NORMAL, 0); + return self; +} + +void nerv_matrix_(save)(Matrix *self, ChunkFile *cfp, Status *status) { + int i, j; + long nrow = self->nrow, ncol = self->ncol; + FILE *fp = cfp->fp; + if (fprintf(fp, "%ld %ld\n", nrow, ncol) < 0) + NERV_EXIT_STATUS(status, MAT_WRITE_ERROR, 0); + for (i = 0; i < nrow; i++) + { + MATRIX_ELEM *row = MATRIX_ROW_PTR(self, i); + for (j = 0; j < ncol; j++) + if (fprintf(fp, MATRIX_ELEM_WRITE_FMT " ", row[j]) < 0) + NERV_EXIT_STATUS(status, MAT_WRITE_ERROR, 0); + if (fprintf(fp, "\n") < 0) + NERV_EXIT_STATUS(status, MAT_WRITE_ERROR, 0); + } + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +void nerv_matrix_(copy_from)(Matrix *a, const Matrix *b, + int a_begin, int b_begin, int b_end, + Status *status) { + if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow && + a_begin + b_end - b_begin <= a->nrow)) + NERV_EXIT_STATUS(status, MAT_INVALID_COPY_INTERVAL, 0); + if (a->ncol != b->ncol) + NERV_EXIT_STATUS(status, MAT_MISMATCH_DIM, 0); + memmove(MATRIX_ROW_PTR(a, a_begin), + MATRIX_ROW_PTR(b, b_begin), + sizeof(MATRIX_ELEM) * b->ncol * (b_end - b_begin)); + NERV_SET_STATUS(status, MAT_NORMAL, 0); +} + +#endif diff --git a/nerv/lib/matrix/generic/mmatrix.h b/nerv/lib/matrix/generic/mmatrix.h new file mode 100644 index 0000000..5336e7a --- /dev/null +++ b/nerv/lib/matrix/generic/mmatrix.h @@ -0,0 +1,7 @@ +#include "../../../common.h" + +Matrix *nerv_matrix_(load)(ChunkData *cdp, Status *status); +void nerv_matrix_(save)(Matrix *self, ChunkFile *cfp, Status *status); +void nerv_matrix_(copy_from)(Matrix *a, const Matrix *b, + int a_begin, int b_begin, int b_end, + Status *status); diff --git a/nerv/lib/matrix/init.lua b/nerv/lib/matrix/init.lua new file mode 100644 index 0000000..1a8925f --- /dev/null +++ b/nerv/lib/matrix/init.lua @@ -0,0 +1,77 @@ +function nerv.Matrix:__tostring__() + local ncol = self:ncol() + local nrow = self:nrow() + local strt = {} + local fmt + if self.fmt then + fmt = self.fmt + else + fmt = "%.8f " + end + if nrow == 1 then + for col = 0, ncol - 1 do + table.insert(strt, string.format(fmt, self[col])) + end + table.insert(strt, "\n") + else + for row = 0, nrow - 1 do + local rp = self[row] + for col = 0, ncol - 1 do + table.insert(strt, string.format(fmt, rp[col])) + end + table.insert(strt, "\n") + end + end + table.insert(strt, string.format( + "[%s %d x %d]", self.__typename, nrow, ncol)) + return table.concat(strt) +end + +-- gen: a function takes take indices of the matrix and return the generated +-- all entrys in the matrix will be assigned by calling gen(i, j) +function nerv.Matrix:generate(gen) + if (self:nrow() == 1) then + for j = 0, self:ncol() - 1 do + self[j] = gen(j) + end + else + for i = 0, self:nrow() - 1 do + local row = self[i] + for j = 0, self:ncol() - 1 do + row[j] = gen(i, j) + end + end + end +end + +nerv.MMatrixInt.fmt = "%d " + +function nerv.CuMatrix:__add__(b) + c = self:create() + c:add(self, b, 1.0, 1.0) + return c +end + +function nerv.CuMatrix:__sub__(b) + c = self:create() + c:add(self, b, 1.0, -1.0) + return c +end + +function nerv.CuMatrix:__mul__(b) + c = nerv.get_type(self.__typename)(self:nrow(), b:ncol()) + c:mul(self, b, 1.0, 0.0, 'N', 'N') + return c +end + +function nerv.CuMatrixFloat.new_from_host(mat) + local res = nerv.CuMatrixFloat(mat:nrow(), mat:ncol()) + res:copy_fromh(mat) + return res +end + +function nerv.CuMatrixFloat:new_to_host() + local res = nerv.MMatrixFloat(self:nrow(), self:ncol()) + self:copy_toh(res) + return res +end diff --git a/nerv/matrix/generic/matrix.h b/nerv/lib/matrix/matrix.h index 833724b..cbf32c2 100644 --- a/nerv/matrix/generic/matrix.h +++ b/nerv/lib/matrix/matrix.h @@ -2,6 +2,7 @@ #define NERV_GENERIC_MATRIX_H #include <stddef.h> + typedef struct Matrix { size_t stride; /* size of a row */ long ncol, nrow, nmax; /* dimension of the matrix */ @@ -15,5 +16,4 @@ typedef struct Matrix { #define MATRIX_ROW_PTR(self, row) \ (MATRIX_ELEM *)((char *)MATRIX_ELEM_PTR(self) + (row) * (self)->stride) - #endif diff --git a/nerv/lib/matrix/mmatrix.c b/nerv/lib/matrix/mmatrix.c new file mode 100644 index 0000000..2f58e7f --- /dev/null +++ b/nerv/lib/matrix/mmatrix.c @@ -0,0 +1,53 @@ +#define NERV_GENERIC_MMATRIX +#include <stdlib.h> +#include "../../common.h" + +#define MATRIX_USE_FLOAT +#define host_matrix_(NAME) host_matrix_float_##NAME +#define nerv_matrix_(NAME) nerv_matrix_host_float_##NAME +#include "generic/matrix.h" +#include "generic/mmatrix.c" +#undef nerv_matrix_ +#undef host_matrix_ +#undef MATRIX_USE_FLOAT +#undef MATRIX_ELEM +#undef MATRIX_ELEM_PTR +#undef MATRIX_ELEM_FMT +#undef MATRIX_ELEM_WRITE_FMT + +#define NERV_GENERIC_MMATRIX +#define MATRIX_USE_DOUBLE +#define host_matrix_(NAME) host_matrix_double_##NAME +#define nerv_matrix_(NAME) nerv_matrix_host_double_##NAME +#include "generic/mmatrix.c" +#undef nerv_matrix_ +#undef host_matrix_ +#undef MATRIX_USE_DOUBLE +#undef MATRIX_ELEM +#undef MATRIX_ELEM_PTR +#undef MATRIX_ELEM_FMT +#undef MATRIX_ELEM_WRITE_FMT + +#define NERV_GENERIC_MMATRIX +#define MATRIX_USE_INT +#define host_matrix_(NAME) host_matrix_int_##NAME +#define nerv_matrix_(NAME) nerv_matrix_host_int_##NAME +#include "generic/mmatrix.c" + +Matrix *nerv_matrix_(perm_gen)(int ncol, Status *status) { + int i; + Matrix *self = nerv_matrix_(create)(1, ncol, status); + if (status->err_code != MAT_NORMAL) + return NULL; + long *prow = self->data.i; + for (i = 0; i < ncol; i++) + prow[i] = i; + for (i = ncol - 1; i >= 0; i--) + { + size_t j = rand() % (i + 1); + long tmp = prow[i]; + prow[i] = prow[j]; + prow[j] = tmp; + } + return self; +} diff --git a/nerv/lib/matrix/mmatrix.h b/nerv/lib/matrix/mmatrix.h new file mode 100644 index 0000000..df91e4c --- /dev/null +++ b/nerv/lib/matrix/mmatrix.h @@ -0,0 +1,4 @@ +#ifndef NERV_MMATRIX_H +#define NERV_MMATRIX_H +Matrix *nerv_matrix_(perm_gen)(int ncol, Status *status); +#endif diff --git a/nerv/matrix/cumatrix.c b/nerv/matrix/cumatrix.c index af34fb4..1bcb0f1 100644 --- a/nerv/matrix/cumatrix.c +++ b/nerv/matrix/cumatrix.c @@ -1,6 +1,7 @@ #define NERV_GENERIC_CUMATRIX #include "../common.h" -#include "cuda_helper.h" +#include "../lib/matrix/cumatrix.h" +#include "../lib/matrix/cuda_helper.h" #include <string.h> #define PROFILE_HASHMAP_SIZE 123457 static cublasHandle_t cublas_handle; @@ -8,54 +9,29 @@ static cudaEvent_t profile_start, profile_stop; static HashMap *profile; static int print_profile(lua_State *L) { - (void)L; - size_t i; - fprintf(stderr, "*** [nerv cumatrix profile] **\n"); - for (i = 0; i < profile->size; i++) - { - HashNode *ptr; - for (ptr = profile->bucket[i]; ptr; ptr = ptr->next) - { - fprintf(stderr, "%s:\t%.6f\n", ptr->key, *(float *)ptr->val); - } - } + nerv_cumatrix_print_profile(); return 0; } static int clear_profile(lua_State *L) { - (void)L; - hashmap_clear(profile); + nerv_cumatrix_clear_profile(); return 0; } -void accu_profile(const char *name, float delta) { - float *val = hashmap_getval(profile, name); - if (!val) - { - val = malloc(sizeof(float)); - *val = 0; - hashmap_setval(profile, name, val); - } - *val += delta; -} - static const luaL_Reg cumatrix_methods[] = { {"print_profile", print_profile}, {"clear_profile", clear_profile}, {NULL, NULL} }; -extern void nerv_matrix_cuda_float_init(lua_State *L); -extern void nerv_matrix_cuda_double_init(lua_State *L); +extern void nerv_matrix_cuda_float_lua_init(lua_State *L); +extern void nerv_matrix_cuda_double_lua_init(lua_State *L); -void nerv_cumatrix_init(lua_State *L) { +void nerv_lua_cumatrix_init(lua_State *L) { luaL_register(L, NULL, cumatrix_methods); - cublasCreate(&cublas_handle); - cudaEventCreate(&profile_start); - cudaEventCreate(&profile_stop); - profile = hashmap_create(PROFILE_HASHMAP_SIZE, bkdr_hash, strcmp); - nerv_matrix_cuda_float_init(L); - nerv_matrix_cuda_double_init(L); + nerv_cumatrix_init(); + nerv_matrix_cuda_float_lua_init(L); + nerv_matrix_cuda_double_lua_init(L); } #define MATRIX_USE_FLOAT diff --git a/nerv/matrix/generic/cumatrix.c b/nerv/matrix/generic/cumatrix.c index b5d1a35..859718e 100644 --- a/nerv/matrix/generic/cumatrix.c +++ b/nerv/matrix/generic/cumatrix.c @@ -1,10 +1,6 @@ #ifdef NERV_GENERIC_CUMATRIX -#include "matrix.h" +#include "../../lib/matrix/generic/matrix.h" #include "elem_type.h" - -#define MATRIX_DATA_FREE(L, ptr) cuda_matrix_(free)(L, ptr) -#define MATRIX_DATA_ALLOC(L, dptr, stride, width, height) \ - cuda_matrix_(alloc)(L, dptr, stride, width, height) #define MATRIX_DATA_WRITE(L, data, idx, val) cuda_matrix_(write)(L, data, idx, val) #define MATRIX_DATA_READ(L, data, idx) cuda_matrix_(read)(L, data, idx) #define MATRIX_INIT(L) cuda_matrix_(init)(L) @@ -12,443 +8,303 @@ #define NERV_GENERIC_MATRIX #define NERV_GENERIC_CUKERNEL #include "../../common.h" -#include "../cukernel.h" -#include "../cuda_helper.h" - -Matrix *nerv_matrix_(new_)(lua_State *L, long nrow, long ncol); -void nerv_matrix_(data_free)(lua_State *L, Matrix *self); - -static void nerv_matrix_(add_)(lua_State *L, const Matrix *a, const Matrix *b, - const Matrix *c, - MATRIX_ELEM alpha, MATRIX_ELEM beta) { - PROFILE_START - CUBLAS_SAFE_SYNC_CALL( - NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, - a->ncol, a->nrow, - &alpha, - MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), - &beta, - MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM), - MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM))); - PROFILE_STOP -} +#include "../../lib/matrix/generic/cumatrix.h" -static int nerv_matrix_(add)(lua_State *L) { +static int nerv_matrix_(lua_add)(lua_State *L) { + Status status; Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname)); + const Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); + const Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname)); MATRIX_ELEM alpha = luaL_checknumber(L, 4); MATRIX_ELEM beta = luaL_checknumber(L, 5); - CHECK_SAME_DIMENSION(a, b); - CHECK_SAME_DIMENSION(a, c); - nerv_matrix_(add_)(L, a, b, c, alpha, beta); + nerv_matrix_(add)(c, a, b, alpha, beta, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(get_cublas_op)(char ch) { +static int nerv_matrix_(lua_get_cublas_op)(char ch) { return (ch == 'T' || ch == 't') ? CUBLAS_OP_T : CUBLAS_OP_N; } -static int nerv_matrix_(mul)(lua_State *L) { -#define SWAP(a, b) \ - do { int t = (a); (a) = (b); (b) = t; } while (0) - +static int nerv_matrix_(lua_mul)(lua_State *L) { + Status status; Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname)); Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname)); MATRIX_ELEM alpha = luaL_checknumber(L, 4); MATRIX_ELEM beta = luaL_checknumber(L, 5); int nargs = lua_gettop(L); - int ta = nargs > 5 ? nerv_matrix_(get_cublas_op)(*luaL_checkstring(L, 6)) \ + int ta = nargs > 5 ? nerv_matrix_(lua_get_cublas_op)(*luaL_checkstring(L, 6)) \ : CUBLAS_OP_N; - int tb = nargs > 6 ? nerv_matrix_(get_cublas_op)(*luaL_checkstring(L, 7)) \ + int tb = nargs > 6 ? nerv_matrix_(lua_get_cublas_op)(*luaL_checkstring(L, 7)) \ : CUBLAS_OP_N; - int am = a->nrow, an = a->ncol; - int bm = b->nrow, bn = b->ncol; - if (ta == CUBLAS_OP_T) SWAP(am, an); - if (tb == CUBLAS_OP_T) SWAP(bm, bn); - if (an != bm) - nerv_error(L, "Wrong dimension of multipliers"); -/* MATRIX_ELEM alpha = 1.0f, beta = 0.0f; */ - /* Because matrix in Nerv is row-major, here b comes first */ - PROFILE_START - CUBLAS_SAFE_SYNC_CALL( - NERV_CUBLAS_(gemm)(cublas_handle, tb, ta, - bn, am, bm, - &alpha, - MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM), - MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), - &beta, - MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM))); - PROFILE_STOP + nerv_matrix_(mul)(c, a, b, alpha, beta, ta, tb, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(create)(lua_State *L) { +static int nerv_matrix_(lua_create)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, a->nrow, a->ncol); + Matrix *b = nerv_matrix_(create)(a->nrow, a->ncol, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(sigmoid)(lua_State *L) { +static int nerv_matrix_(lua_sigmoid)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); - CHECK_SAME_DIMENSION(a, b); - PROFILE_START - cudak_(cuda_sigmoid)(b, a); - PROFILE_STOP + nerv_matrix_(sigmoid)(a, b, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(sigmoid_grad)(lua_State *L) { +static int nerv_matrix_(lua_sigmoid_grad)(lua_State *L) { + Status status; Matrix *nerr = luaT_checkudata(L, 1, nerv_matrix_(tname)); Matrix *err = luaT_checkudata(L, 2, nerv_matrix_(tname)); Matrix *output = luaT_checkudata(L, 3, nerv_matrix_(tname)); - CHECK_SAME_DIMENSION(nerr, err); - CHECK_SAME_DIMENSION(nerr, output); - PROFILE_START - cudak_(cuda_sigmoid_grad)(output, err, nerr); - PROFILE_STOP + nerv_matrix_(sigmoid_grad)(nerr, err, output, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(softmax)(lua_State *L) { +static int nerv_matrix_(lua_softmax)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *max, *max_idx; - Matrix *dno; - CHECK_SAME_DIMENSION(a, b); - max = nerv_matrix_(new_)(L, a->nrow, 1); - max_idx = nerv_matrix_(new_)(L, a->nrow, 1); - dno = nerv_matrix_(new_)(L, a->nrow, 1); - PROFILE_START - cudak_(cuda_rowmax_idx)(a, max, max_idx); - cudak_(cuda_softmax_denominator)(a, max, dno); - cudak_(cuda_softmax_final)(a, max, dno, b); - PROFILE_STOP - nerv_matrix_(data_free)(L, max); - nerv_matrix_(data_free)(L, dno); + Matrix *max_idx = nerv_matrix_(softmax)(b, a, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, max_idx, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(rowsum)(lua_State *L) { +static int nerv_matrix_(lua_rowsum)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1); - PROFILE_START - cudak_(cuda_rowsum)(a, b); - PROFILE_STOP + Matrix *b = nerv_matrix_(rowsum)(a, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(colsum)(lua_State *L) { +static int nerv_matrix_(lua_colsum)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, 1, a->ncol); - PROFILE_START - cudak_(cuda_colsum)(a, b); - PROFILE_STOP + Matrix *b = nerv_matrix_(colsum)(a, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(colsame)(lua_State *L) { +static int nerv_matrix_(lua_colsame)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *ref = luaT_checkudata(L, 2, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, 1, a->ncol); - CHECK_SAME_DIMENSION(a, ref); - PROFILE_START - cudak_(cuda_colsame)(a, ref, b); - PROFILE_STOP + const Matrix *ref = luaT_checkudata(L, 2, nerv_matrix_(tname)); + Matrix *b = nerv_matrix_(colsame)(a, ref, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(rowmax)(lua_State *L) { +static int nerv_matrix_(lua_rowmax)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1); - PROFILE_START - cudak_(cuda_rowmax)(a, b); - PROFILE_STOP + Matrix *b = nerv_matrix_(rowmax)(a, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(rowmax_idx)(lua_State *L) { +static int nerv_matrix_(lua_rowmax_idx)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1); - Matrix *idx = nerv_matrix_(new_)(L, a->nrow, 1); - PROFILE_START - cudak_(cuda_rowmax_idx)(a, b, idx); - PROFILE_STOP + Matrix *b; + Matrix *idx; + nerv_matrix_(rowmax_idx)(a, &b, &idx, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); luaT_pushudata(L, idx, nerv_matrix_(tname)); return 2; } -static int nerv_matrix_(add_row)(lua_State *L) { - Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); +static int nerv_matrix_(lua_add_row)(lua_State *L) { + Status status; + const Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname)); double beta = luaL_checknumber(L, 3); - if (a->ncol != b->ncol) - nerv_error(L, "the number of columns is not the same"); - if (a->nrow != 1) - nerv_error(L, "a row vector is expected"); - PROFILE_START - cudak_(cuda_add_row)(a, b, beta); - PROFILE_STOP + nerv_matrix_(add_row)(b, a, beta, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(fill)(lua_State *L) { +static int nerv_matrix_(lua_fill)(lua_State *L) { + Status status; Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); double val = luaL_checknumber(L, 2); - PROFILE_START - cudak_(cuda_fill)(self, val); - PROFILE_STOP + nerv_matrix_(fill)(self, val, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(copy_fromd)(lua_State *L) { +static int nerv_matrix_(lua_copy_fromd)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); int nargs = lua_gettop(L); int b_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0; int b_end = nargs > 3 ? luaL_checkinteger(L, 4) : b->nrow; int a_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0; - if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow && - a_begin + b_end - b_begin <= a->nrow)) - nerv_error(L, "invalid copy interval"); - if (a->ncol != b->ncol) - nerv_error(L, "matrices should be of the same dimension"); - PROFILE_START - CUDA_SAFE_SYNC_CALL( - cudaMemcpy2D(MATRIX_ROW_PTR(a, a_begin), a->stride, - MATRIX_ROW_PTR(b, b_begin), b->stride, - sizeof(MATRIX_ELEM) * b->ncol, b_end - b_begin, - cudaMemcpyDeviceToDevice)); - PROFILE_STOP + nerv_matrix_(copy_fromd)(a, b, a_begin, b_begin, b_end, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } extern const char *MATRIX_CUMATRIX_HOST_TNAME; -static int nerv_matrix_(copy_fromh)(lua_State *L) { +static int nerv_matrix_(lua_copy_fromh)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); + const Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); int nargs = lua_gettop(L); int b_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0; int b_end = nargs > 3 ? luaL_checkinteger(L, 4) : b->nrow; int a_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0; - if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow && - a_begin + b_end - b_begin <= a->nrow)) - nerv_error(L, "invalid copy interval"); - if (a->ncol != b->ncol) - nerv_error(L, "matrices should be of the same dimension"); - PROFILE_START - CUDA_SAFE_SYNC_CALL( - cudaMemcpy2D(MATRIX_ROW_PTR(a, a_begin), a->stride, - MATRIX_ROW_PTR(b, b_begin), b->stride, - sizeof(MATRIX_ELEM) * b->ncol, b_end - b_begin, - cudaMemcpyHostToDevice)); - PROFILE_STOP + nerv_matrix_(copy_fromh)(a, b, a_begin, b_begin, b_end, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(copy_toh)(lua_State *L) { +static int nerv_matrix_(lua_copy_toh)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); + const Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); int nargs = lua_gettop(L); int a_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0; int a_end = nargs > 3 ? luaL_checkinteger(L, 4) : a->nrow; int b_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0; - if (!(0 <= a_begin && a_begin < a_end && a_end <= a->nrow && - b_begin + a_end - a_begin <= b->nrow)) - nerv_error(L, "invalid copy interval"); - if (b->ncol != a->ncol) - nerv_error(L, "matrices should be of the same dimension"); - PROFILE_START - CUDA_SAFE_SYNC_CALL( - cudaMemcpy2D(MATRIX_ROW_PTR(b, b_begin), b->stride, - MATRIX_ROW_PTR(a, a_begin), a->stride, - sizeof(MATRIX_ELEM) * a->ncol, a_end - a_begin, - cudaMemcpyDeviceToHost)); - PROFILE_STOP + nerv_matrix_(copy_toh)(a, b, a_begin, a_end, b_begin, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(trans)(lua_State *L) { +static int nerv_matrix_(lua_trans)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(L, a->ncol, a->nrow); - MATRIX_ELEM alpha = 1, beta = 0; - /* FIXME: possible memory leak when lua error is raised */ - PROFILE_START - CUBLAS_SAFE_SYNC_CALL( - NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_T, - a->nrow, a->ncol, - &alpha, - MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), - &beta, - MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM), - MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM))); - PROFILE_STOP + Matrix *b = nerv_matrix_(trans)(a, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } -static int nerv_matrix_(mul_elem)(lua_State *L) { - Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname)); +static int nerv_matrix_(lua_mul_elem)(lua_State *L) { + Status status; + const Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); + const Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname)); Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname)); - CHECK_SAME_DIMENSION(a, b); - CHECK_SAME_DIMENSION(a, c); - PROFILE_START - cudak_(cuda_mul_elem)(a, b, c); - PROFILE_STOP + nerv_matrix_(mul_elem)(c, a, b, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(log_elem)(lua_State *L) { - Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); +static int nerv_matrix_(lua_log_elem)(lua_State *L) { + Status status; + const Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname)); - CHECK_SAME_DIMENSION(a, b); - PROFILE_START - cudak_(cuda_log_elem)(a, b); - PROFILE_STOP + nerv_matrix_(log_elem)(b, a, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(decompress)(lua_State *L) { - Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b; +static int nerv_matrix_(lua_decompress)(lua_State *L) { + Status status; + const Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); int orig_col = luaL_checkinteger(L, 2); - if (a->ncol != 1) - nerv_error(L, "the compressed matrix must be a column vector"); - b = nerv_matrix_(new_)(L, a->nrow, orig_col); - PROFILE_START - cudak_(cuda_fill)(b, 0.0); - cudak_(cuda_decompress)(a, b); - PROFILE_STOP + Matrix *b = nerv_matrix_(decompress)(a, orig_col, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } extern const char *nerv_matrix_host_int_tname; -static int nerv_matrix_(copy_rows_fromh_by_idx)(lua_State *L) { +static int nerv_matrix_(lua_copy_rows_fromh_by_idx)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); - Matrix *idx = luaT_checkudata(L, 3, nerv_matrix_host_int_tname); + const Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); + const Matrix *idx = luaT_checkudata(L, 3, nerv_matrix_host_int_tname); long nrow = a->nrow; int b_begin = lua_gettop(L) > 3 ? luaL_checkinteger(L, 4) : 0; - if (!(0 <= b_begin && b_begin + nrow <= idx->ncol)) - nerv_error(L, "invalid copy interval"); - long *idx_ptr = idx->data.i; - int i; - if (idx->nrow != 1) - nerv_error(L, "index should be a vector"); - if (a->ncol != b->ncol) - nerv_error(L, "source/destination dimension mismatch"); - cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t) * nrow); - for (i = 0; i < nrow; i++) - { - int src_row = idx_ptr[b_begin + i]; - if (!(0 <= src_row && src_row < b->nrow)) - nerv_error(L, "invalid index"); - CUDA_SAFE_CALL(cudaStreamCreate(streams + i)); - CUDA_SAFE_CALL(cudaMemcpyAsync(MATRIX_ROW_PTR(a, i), - MATRIX_ROW_PTR(b, src_row), - b->stride, - cudaMemcpyHostToDevice, streams[i])); - } - for (i = 0; i < nrow; i++) - { - CUDA_SAFE_CALL(cudaStreamSynchronize(streams[i])); - CUDA_SAFE_CALL(cudaStreamDestroy(streams[i])); - } - free(streams); + nerv_matrix_(copy_rows_fromh_by_idx)(a, b, idx, b_begin, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(expand_frm)(lua_State *L) { +static int nerv_matrix_(lua_expand_frm)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); int context = luaL_checkinteger(L, 3); - if (a->nrow != b->nrow) - nerv_error(L, "mismatching number of frames"); - if (a->ncol != b->ncol * (context * 2 + 1)) - nerv_error(L, "the width should be 2 * context + 1"); - PROFILE_START - cudak_(cuda_expand_frm)(b, a, context); - PROFILE_STOP + nerv_matrix_(expand_frm)(a, b, context, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(rearrange_frm)(lua_State *L) { +static int nerv_matrix_(lua_rearrange_frm)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); int step = luaL_checkinteger(L, 3); - CHECK_SAME_DIMENSION(a, b); - if (b->ncol % step) - nerv_error(L, "the dimension of columns is not divisible by step"); - PROFILE_START - cudak_(cuda_rearrange_frm)(b, a, step); - PROFILE_STOP + nerv_matrix_(rearrange_frm)(a, b, step, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(scale_rows_by_col)(lua_State *L) { +static int nerv_matrix_(lua_scale_rows_by_col)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); - if (a->nrow != b->nrow) - nerv_error(L, "the number of rows is not the same"); - if (b->ncol != 1) - nerv_error(L, "a column vector is expected"); - PROFILE_START - cudak_(cuda_scale_rows_by_col)(b, a); - PROFILE_STOP + const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + nerv_matrix_(scale_rows_by_col)(a, b, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(scale_rows_by_row)(lua_State *L) { +static int nerv_matrix_(lua_scale_rows_by_row)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); - if (a->ncol != b->ncol) - nerv_error(L, "the number of columns is not the same"); - if (b->nrow != 1) - nerv_error(L, "a row vector is expected"); - PROFILE_START - cudak_(cuda_scale_rows_by_row)(b, a); - PROFILE_STOP + const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + nerv_matrix_(scale_rows_by_row)(a, b, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } static const luaL_Reg nerv_matrix_(extra_methods)[] = { - {"create", nerv_matrix_(create)}, - {"colsum", nerv_matrix_(colsum)}, - {"colsame", nerv_matrix_(colsame)}, - {"rowsum", nerv_matrix_(rowsum)}, - {"rowmax", nerv_matrix_(rowmax)}, - {"rowmax_idx", nerv_matrix_(rowmax_idx)}, - {"trans", nerv_matrix_(trans)}, - {"decompress", nerv_matrix_(decompress)}, + {"create", nerv_matrix_(lua_create)}, + {"colsum", nerv_matrix_(lua_colsum)}, + {"colsame", nerv_matrix_(lua_colsame)}, + {"rowsum", nerv_matrix_(lua_rowsum)}, + {"rowmax", nerv_matrix_(lua_rowmax)}, + {"rowmax_idx", nerv_matrix_(lua_rowmax_idx)}, + {"trans", nerv_matrix_(lua_trans)}, + {"decompress", nerv_matrix_(lua_decompress)}, /* in-place calc */ - {"copy_fromh", nerv_matrix_(copy_fromh)}, - {"copy_fromd", nerv_matrix_(copy_fromd)}, - {"copy_toh", nerv_matrix_(copy_toh)}, - {"add", nerv_matrix_(add)}, - {"mul", nerv_matrix_(mul)}, - {"add_row", nerv_matrix_(add_row)}, - {"fill", nerv_matrix_(fill)}, - {"sigmoid", nerv_matrix_(sigmoid)}, - {"sigmoid_grad", nerv_matrix_(sigmoid_grad)}, - {"softmax", nerv_matrix_(softmax)}, - {"mul_elem", nerv_matrix_(mul_elem)}, - {"log_elem", nerv_matrix_(log_elem)}, - {"copy_rows_fromh_by_idx", nerv_matrix_(copy_rows_fromh_by_idx)}, - {"expand_frm", nerv_matrix_(expand_frm)}, - {"rearrange_frm", nerv_matrix_(rearrange_frm)}, - {"scale_rows_by_row", nerv_matrix_(scale_rows_by_row)}, - {"scale_rows_by_col", nerv_matrix_(scale_rows_by_col)}, + {"copy_fromh", nerv_matrix_(lua_copy_fromh)}, + {"copy_fromd", nerv_matrix_(lua_copy_fromd)}, + {"copy_toh", nerv_matrix_(lua_copy_toh)}, + {"add", nerv_matrix_(lua_add)}, + {"mul", nerv_matrix_(lua_mul)}, + {"add_row", nerv_matrix_(lua_add_row)}, + {"fill", nerv_matrix_(lua_fill)}, + {"sigmoid", nerv_matrix_(lua_sigmoid)}, + {"sigmoid_grad", nerv_matrix_(lua_sigmoid_grad)}, + {"softmax", nerv_matrix_(lua_softmax)}, + {"mul_elem", nerv_matrix_(lua_mul_elem)}, + {"log_elem", nerv_matrix_(lua_log_elem)}, + {"copy_rows_fromh_by_idx", nerv_matrix_(lua_copy_rows_fromh_by_idx)}, + {"expand_frm", nerv_matrix_(lua_expand_frm)}, + {"rearrange_frm", nerv_matrix_(lua_rearrange_frm)}, + {"scale_rows_by_row", nerv_matrix_(lua_scale_rows_by_row)}, + {"scale_rows_by_col", nerv_matrix_(lua_scale_rows_by_col)}, {NULL, NULL} }; @@ -456,37 +312,34 @@ static void cuda_matrix_(init)(lua_State *L) { luaN_append_methods(L, nerv_matrix_(extra_methods)); } -static void cuda_matrix_(free)(lua_State *L, MATRIX_ELEM *ptr) { - CUDA_SAFE_SYNC_CALL(cudaFree(ptr)); +int nerv_matrix_(lua_get_elem)(lua_State *L) { + return nerv_error_method_not_implemented(L); } -static void cuda_matrix_(alloc)(lua_State *L, MATRIX_ELEM **dptr, - size_t *stride, long width, long height) { - PROFILE_START - CUDA_SAFE_SYNC_CALL(cudaMallocPitch((void **)dptr, stride, width, height)); - PROFILE_STOP +int nerv_matrix_(lua_set_elem)(lua_State *L) { + return nerv_error_method_not_implemented(L); } static MATRIX_ELEM cuda_matrix_(read)(lua_State *L, MATRIX_ELEM *data, - int idx) { + int idx) { + cudaError_t err; MATRIX_ELEM res; - CUDA_SAFE_SYNC_CALL(cudaMemcpy(&res, data + idx, - sizeof(MATRIX_ELEM), cudaMemcpyDeviceToHost)); + err = cudaMemcpy(&res, data + idx, + sizeof(MATRIX_ELEM), cudaMemcpyDeviceToHost); + if (err != cudaSuccess) + nerv_error(L, "cuda error: error while reading element"); + cudaDeviceSynchronize(); return res; } static void cuda_matrix_(write)(lua_State *L, MATRIX_ELEM *data, int idx, MATRIX_ELEM val) { - CUDA_SAFE_SYNC_CALL(cudaMemcpy(data + idx, &val, - sizeof(MATRIX_ELEM), cudaMemcpyHostToDevice)); -} - -int nerv_matrix_(get_elem)(lua_State *L) { - return nerv_error_method_not_implemented(L); -} - -int nerv_matrix_(set_elem)(lua_State *L) { - return nerv_error_method_not_implemented(L); + cudaError_t err; + err = cudaMemcpy(data + idx, &val, + sizeof(MATRIX_ELEM), cudaMemcpyHostToDevice); + if (err != cudaSuccess) + nerv_error(L, "cuda error: error while writing element"); + cudaDeviceSynchronize(); } #include "matrix.c" diff --git a/nerv/matrix/generic/matrix.c b/nerv/matrix/generic/matrix.c index e17fb42..9d2521b 100644 --- a/nerv/matrix/generic/matrix.c +++ b/nerv/matrix/generic/matrix.c @@ -1,68 +1,32 @@ #ifdef NERV_GENERIC_MATRIX #include "../../common.h" -#include "matrix.h" +#include "../../lib/matrix/generic/matrix.h" extern const char *nerv_matrix_(tname); extern const char *MATRIX_BASE_TNAME; -void nerv_matrix_(data_free)(lua_State *L, Matrix *self) { - (void)L; - assert(*self->data_ref > 0); - if (--(*self->data_ref) == 0) - { - /* free matrix data */ - MATRIX_DATA_FREE(L, MATRIX_ELEM_PTR(self)); - free(self->data_ref); - free(self); - } -} - -void nerv_matrix_(data_retain)(Matrix *self) { - (*self->data_ref)++; -} - -Matrix *nerv_matrix_(new_)(lua_State *L, long nrow, long ncol) { - Matrix *self = (Matrix *)malloc(sizeof(Matrix)); - self->nrow = nrow; - self->ncol = ncol; - self->nmax = self->nrow * self->ncol; - MATRIX_DATA_ALLOC(L, &MATRIX_ELEM_PTR(self), &self->stride, - sizeof(MATRIX_ELEM) * self->ncol, self->nrow); - self->data_ref = (long *)malloc(sizeof(long)); - *self->data_ref = 0; - nerv_matrix_(data_retain)(self); - return self; -} -int nerv_matrix_(new)(lua_State *L) { - luaT_pushudata(L, nerv_matrix_(new_)(L, luaL_checkinteger(L, 1), - luaL_checkinteger(L, 2)), - nerv_matrix_(tname)); +int nerv_matrix_(lua_new)(lua_State *L) { + Status status; + Matrix *self = nerv_matrix_(create)(luaL_checkinteger(L, 1), + luaL_checkinteger(L, 2), &status); + NERV_LUA_CHECK_STATUS(L, status); + luaT_pushudata(L, self, nerv_matrix_(tname)); return 1; } -int nerv_matrix_(destroy)(lua_State *L) { +int nerv_matrix_(lua_destroy)(lua_State *L) { + Status status; Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); - nerv_matrix_(data_free)(L, self); + nerv_matrix_(destroy)(self, &status); + NERV_LUA_CHECK_STATUS(L, status); return 1; } -int nerv_matrix_(get_elem)(lua_State *L); -int nerv_matrix_(set_elem)(lua_State *L); - -static Matrix *nerv_matrix_(getrow)(Matrix *self, int row) { - Matrix *prow = (Matrix *)malloc(sizeof(Matrix)); - prow->ncol = self->ncol; - prow->nrow = 1; - prow->stride = self->stride; - prow->nmax = prow->ncol; - MATRIX_ELEM_PTR(prow) = MATRIX_ROW_PTR(self, row); - prow->data_ref = self->data_ref; - nerv_matrix_(data_retain)(prow); - return prow; -} +int nerv_matrix_(lua_get_elem)(lua_State *L); +int nerv_matrix_(lua_set_elem)(lua_State *L); -static int nerv_matrix_(newindex)(lua_State *L) { +static int nerv_matrix_(lua_newindex)(lua_State *L) { Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); if (lua_isnumber(L, 2)) { @@ -87,7 +51,8 @@ static int nerv_matrix_(newindex)(lua_State *L) { } -static int nerv_matrix_(index)(lua_State *L) { +static int nerv_matrix_(lua_index)(lua_State *L) { + Status status; Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); if (lua_isnumber(L, 2)) { @@ -102,7 +67,8 @@ static int nerv_matrix_(index)(lua_State *L) { { if (idx < 0 || idx >= self->nrow) nerv_error(L, "index must be within range [0, %d)", self->nrow); - luaT_pushudata(L, nerv_matrix_(getrow)(self, idx), nerv_matrix_(tname)); + luaT_pushudata(L, nerv_matrix_(getrow)(self, idx), + nerv_matrix_(tname)); } lua_pushboolean(L, 1); return 2; @@ -114,38 +80,38 @@ static int nerv_matrix_(index)(lua_State *L) { } } -static int nerv_matrix_(ncol)(lua_State *L) { +static int nerv_matrix_(lua_ncol)(lua_State *L) { Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); lua_pushinteger(L, self->ncol); return 1; } -static int nerv_matrix_(nrow)(lua_State *L) { +static int nerv_matrix_(lua_nrow)(lua_State *L) { Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); lua_pushinteger(L, self->nrow); return 1; } -static int nerv_matrix_(get_dataref_value)(lua_State *L) { - Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); - lua_pushinteger(L, *(self->data_ref)); - return 1; -} +static int nerv_matrix_(lua_get_dataref_value)(lua_State *L) { + Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); + lua_pushinteger(L, *(self->data_ref)); + return 1; +} static const luaL_Reg nerv_matrix_(methods)[] = { - {"get_elem", nerv_matrix_(get_elem)}, - {"set_elem", nerv_matrix_(set_elem)}, - {"ncol", nerv_matrix_(ncol)}, - {"nrow", nerv_matrix_(nrow)}, - {"get_dataref_value", nerv_matrix_(get_dataref_value)}, - {"__index__", nerv_matrix_(index)}, - {"__newindex__", nerv_matrix_(newindex)}, + {"get_elem", nerv_matrix_(lua_get_elem)}, + {"set_elem", nerv_matrix_(lua_set_elem)}, + {"ncol", nerv_matrix_(lua_ncol)}, + {"nrow", nerv_matrix_(lua_nrow)}, + {"get_dataref_value", nerv_matrix_(lua_get_dataref_value)}, + {"__index__", nerv_matrix_(lua_index)}, + {"__newindex__", nerv_matrix_(lua_newindex)}, {NULL, NULL} }; -void nerv_matrix_(init)(lua_State *L) { +void nerv_matrix_(lua_init)(lua_State *L) { luaT_newmetatable(L, nerv_matrix_(tname), MATRIX_BASE_TNAME, - nerv_matrix_(new), nerv_matrix_(destroy), NULL); + nerv_matrix_(lua_new), nerv_matrix_(lua_destroy), NULL); luaL_register(L, NULL, nerv_matrix_(methods)); #ifdef MATRIX_INIT MATRIX_INIT(L); diff --git a/nerv/matrix/generic/mmatrix.c b/nerv/matrix/generic/mmatrix.c index 697c9fc..233102a 100644 --- a/nerv/matrix/generic/mmatrix.c +++ b/nerv/matrix/generic/mmatrix.c @@ -1,9 +1,6 @@ #ifdef NERV_GENERIC_MMATRIX -#include "matrix.h" +#include "../../lib/matrix/generic/matrix.h" #include "elem_type.h" -#define MATRIX_DATA_FREE(L, ptr) free(ptr) -#define MATRIX_DATA_ALLOC(L, dptr, stride, width, height) \ - host_matrix_(alloc)(L, dptr, stride, width, height) #define MATRIX_DATA_WRITE(L, data, idx, val) (data[idx] = val) #define MATRIX_DATA_READ(L, data, idx) (data[idx]) #define MATRIX_INIT(L) host_matrix_(init)(L) @@ -11,17 +8,10 @@ #define NERV_GENERIC_MATRIX #include "../../common.h" #include "../../io/chunk_file.h" +#include "../../lib/matrix/generic/mmatrix.h" #include "string.h" -static void host_matrix_(alloc)(lua_State *L, - MATRIX_ELEM **dptr, size_t *stride, - long width, long height) { - if ((*dptr = (MATRIX_ELEM *)malloc(width * height)) == NULL) - nerv_error(L, "mmatrix insufficient memory"); - *stride = width; -} - -int nerv_matrix_(get_elem)(lua_State *L) { +int nerv_matrix_(lua_get_elem)(lua_State *L) { Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); int idx = luaL_checkinteger(L, 2); if (idx < 0 || idx >= self->nmax) @@ -30,7 +20,7 @@ int nerv_matrix_(get_elem)(lua_State *L) { return 1; } -int nerv_matrix_(set_elem)(lua_State *L) { +int nerv_matrix_(lua_set_elem)(lua_State *L) { Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); int idx = luaL_checkinteger(L, 2); MATRIX_ELEM v = luaL_checknumber(L, 3); @@ -50,72 +40,42 @@ static void host_matrix_(init)(lua_State *L) { #include "matrix.c" -int nerv_matrix_(load)(lua_State *L) { +int nerv_matrix_(lua_load)(lua_State *L) { + Status status; ChunkData *cdp = luaT_checkudata(L, 1, nerv_chunk_data_tname); - Matrix *self; - int i, j; - long nrow, ncol; - FILE *fp = cdp->fp; - if (fscanf(fp, "%ld %ld", &nrow, &ncol) != 2) - return 0; - self = nerv_matrix_(new_)(L, nrow, ncol); - for (i = 0; i < nrow; i++) - { - MATRIX_ELEM *row = MATRIX_ROW_PTR(self, i); - for (j = 0; j < ncol; j++) - if (fscanf(fp, MATRIX_ELEM_FMT, row + j) != 1) - { - free(self); - return 0; - } - } + Matrix *self = nerv_matrix_(load)(cdp, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, self, nerv_matrix_(tname)); return 1; } -int nerv_matrix_(save)(lua_State *L) { +int nerv_matrix_(lua_save)(lua_State *L) { + Status status; ChunkFile *cfp = luaT_checkudata(L, 2, nerv_chunk_file_handle_tname); Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname)); - int i, j; - long nrow = self->nrow, ncol = self->ncol; - FILE *fp = cfp->fp; - if (fprintf(fp, "%ld %ld\n", nrow, ncol) < 0) - return 0; - for (i = 0; i < nrow; i++) - { - MATRIX_ELEM *row = MATRIX_ROW_PTR(self, i); - for (j = 0; j < ncol; j++) - if (fprintf(fp, MATRIX_ELEM_WRITE_FMT " ", row[j]) < 0) - return 0; - if (fprintf(fp, "\n") < 0) - return 0; - } + nerv_matrix_(save)(self, cfp, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } -static int nerv_matrix_(copy_from)(lua_State *L) { +int nerv_matrix_(lua_copy_from)(lua_State *L) { + Status status; Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); int nargs = lua_gettop(L); int b_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0; int b_end = nargs > 3 ? luaL_checkinteger(L, 4) : b->nrow; int a_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0; - if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow && - a_begin + b_end - b_begin <= a->nrow)) - nerv_error(L, "invalid copy interval"); - if (a->ncol != b->ncol) - nerv_error(L, "matrices should be of the same dimension"); - memmove(MATRIX_ROW_PTR(a, a_begin), - MATRIX_ROW_PTR(b, b_begin), - sizeof(MATRIX_ELEM) * b->ncol * (b_end - b_begin)); + nerv_matrix_(copy_from)(a, b, a_begin, b_begin, b_end, &status); + NERV_LUA_CHECK_STATUS(L, status); return 0; } static const luaL_Reg nerv_matrix_(extra_methods)[] = { - {"load", nerv_matrix_(load)}, - {"save", nerv_matrix_(save)}, - {"copy_from", nerv_matrix_(copy_from)}, + {"load", nerv_matrix_(lua_load)}, + {"save", nerv_matrix_(lua_save)}, + {"copy_from", nerv_matrix_(lua_copy_from)}, {NULL, NULL} }; diff --git a/nerv/matrix/init.c b/nerv/matrix/init.c index c29d7e9..27472b9 100644 --- a/nerv/matrix/init.c +++ b/nerv/matrix/init.c @@ -1,12 +1,11 @@ #include "../common.h" -#include "generic/matrix.h" const char *nerv_matrix_tname = "nerv.Matrix"; const char *nerv_matrix_cuda_tname = "nerv.CuMatrix"; const char *nerv_matrix_host_tname = "nerv.MMatrix"; -void nerv_cumatrix_init(lua_State *L); -void nerv_mmatrix_init(lua_State *L); +void nerv_lua_cumatrix_init(lua_State *L); +void nerv_lua_mmatrix_init(lua_State *L); static const luaL_Reg matrix_methods[] = { {"__tostring__", nerv_error_method_not_implemented }, @@ -25,11 +24,11 @@ void nerv_matrix_init(lua_State *L) { /* CuMatrix inherits from Matrix */ luaT_newmetatable(L, nerv_matrix_cuda_tname, nerv_matrix_tname, NULL, NULL, NULL); - nerv_cumatrix_init(L); + nerv_lua_cumatrix_init(L); lua_pop(L, 1); /* MMatrix inherits from Matrix */ luaT_newmetatable(L, nerv_matrix_host_tname, nerv_matrix_tname, NULL, NULL, NULL); - nerv_mmatrix_init(L); + nerv_lua_mmatrix_init(L); lua_pop(L, 1); } diff --git a/nerv/matrix/mmatrix.c b/nerv/matrix/mmatrix.c index d1d68b9..b25af03 100644 --- a/nerv/matrix/mmatrix.c +++ b/nerv/matrix/mmatrix.c @@ -1,15 +1,15 @@ #define NERV_GENERIC_MMATRIX #include <stdlib.h> #include "../common.h" -void nerv_matrix_host_float_init(lua_State *L); -void nerv_matrix_host_double_init(lua_State *L); -void nerv_matrix_host_int_init(lua_State *L); +void nerv_matrix_host_float_lua_init(lua_State *L); +void nerv_matrix_host_double_lua_init(lua_State *L); +void nerv_matrix_host_int_lua_init(lua_State *L); -void nerv_mmatrix_init(lua_State *L) { +void nerv_lua_mmatrix_init(lua_State *L) { srand(1); - nerv_matrix_host_float_init(L); - nerv_matrix_host_double_init(L); - nerv_matrix_host_int_init(L); + nerv_matrix_host_float_lua_init(L); + nerv_matrix_host_double_lua_init(L); + nerv_matrix_host_int_lua_init(L); } #define MATRIX_USE_FLOAT @@ -52,26 +52,18 @@ static void host_matrix_(init_extra)(lua_State *L) { } #include "generic/mmatrix.c" +#include "../lib/matrix/mmatrix.h" -static int nerv_matrix_(perm_gen)(lua_State *L) { +static int nerv_matrix_(lua_perm_gen)(lua_State *L) { + Status status; int i, ncol = luaL_checkinteger(L, 1); - Matrix *self = nerv_matrix_(new_)(L, 1, ncol); - long *prow = self->data.i; - for (i = 0; i < ncol; i++) - prow[i] = i; - for (i = ncol - 1; i >= 0; i--) - { - size_t j = rand() % (i + 1); - long tmp = prow[i]; - prow[i] = prow[j]; - prow[j] = tmp; - } + Matrix *self = nerv_matrix_(perm_gen)(ncol, &status); + NERV_LUA_CHECK_STATUS(L, status); luaT_pushudata(L, self, nerv_matrix_(tname)); return 1; } static const luaL_Reg nerv_matrix_(extra_methods_int)[] = { - {"perm_gen", nerv_matrix_(perm_gen)}, + {"perm_gen", nerv_matrix_(lua_perm_gen)}, {NULL, NULL} }; - diff --git a/nerv/nerv-scm-1.rockspec b/nerv/nerv-scm-1.rockspec index 0b7e4cb..786b2df 100644 --- a/nerv/nerv-scm-1.rockspec +++ b/nerv/nerv-scm-1.rockspec @@ -24,6 +24,7 @@ build = { LUA="$(LUA)", }, install_variables = { + LUA_BINDIR="$(LUA_BINDIR)", INST_PREFIX="$(PREFIX)", INST_BINDIR="$(BINDIR)", INST_LIBDIR="$(LIBDIR)", diff --git a/speech b/speech -Subproject 32eac093cc431849a92e5a2297c5fe646fd6055 +Subproject b6301089cde20f4c825c7f5deaf179082aad63d |