diff options
author | Determinant <[email protected]> | 2015-05-27 12:02:44 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-05-27 12:02:44 +0800 |
commit | 44752a8175c54effd0c901333a7eb4cc71dd6810 (patch) | |
tree | 9794cfff9382e510298c729bb70b2cdd1ece23f7 | |
parent | f8543464c13584e39bfacee694ee1ed80ac121f4 (diff) |
add implementation for sigmoid layer (not tested)
-rw-r--r-- | layer/affine.lua | 1 | ||||
-rw-r--r-- | layer/sigmoid.lua | 14 | ||||
-rw-r--r-- | matrix/cukernel.h | 1 | ||||
-rw-r--r-- | matrix/generic/cukernel.cu | 25 | ||||
-rw-r--r-- | matrix/generic/cumatrix.c | 31 |
5 files changed, 64 insertions, 8 deletions
diff --git a/layer/affine.lua b/layer/affine.lua index 221aacd..94e7497 100644 --- a/layer/affine.lua +++ b/layer/affine.lua @@ -11,6 +11,7 @@ function LinearTransParam:write(pfhandle) end function AffineLayer:__init(id, global_conf, ltp, bp) + self.id = id self.ltp = ltp self.bp = bp self.gconf = global_conf diff --git a/layer/sigmoid.lua b/layer/sigmoid.lua new file mode 100644 index 0000000..d69e9e3 --- /dev/null +++ b/layer/sigmoid.lua @@ -0,0 +1,14 @@ +local SigmoidLayer = nerv.class("nerv.SigmoidLayer", "nerv.Layer") + +function SigmoidLayer:__init(id, global_conf) + self.id = id + self.gconf = global_conf +end + +function SigmoidLayer:propagate(input, output) + output:sigmoid(input) +end + +function SigmoidLayer:back_propagate(next_bp_err, bp_err, input, output) + next_bp_err:sigmoid(bp_err, output) +end diff --git a/matrix/cukernel.h b/matrix/cukernel.h index 3cad489..b2b6cb2 100644 --- a/matrix/cukernel.h +++ b/matrix/cukernel.h @@ -1,5 +1,6 @@ #ifdef NERV_GENERIC_CUKERNEL void cudak_(cuda_sigmoid)(const Matrix *a, Matrix *b); +void cudak_(cuda_sigmoid_grad)(const Matrix *output, const Matrix *err, Matrix *nerr); void cudak_(cuda_rowsum)(const Matrix *a, Matrix *b); void cudak_(cuda_rowmax)(const Matrix *a, Matrix *b); void cudak_(cuda_colsum)(const Matrix *a, Matrix *b); diff --git a/matrix/generic/cukernel.cu b/matrix/generic/cukernel.cu index 8b929e4..517393e 100644 --- a/matrix/generic/cukernel.cu +++ b/matrix/generic/cukernel.cu @@ -16,6 +16,18 @@ __global__ void cudak_(sigmoid)(const MATRIX_ELEM *a, MATRIX_ELEM *b, b[idx] = 1.0 / (1.0 + exp(-a[idx])); } +__global__ void cudak_(sigmoid_grad)(const MATRIX_ELEM *output, + const MATRIX_ELEM *err, + MATRIX_ELEM *nerr, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + nerr[idx] = output[idx] * (1.0 - output[idx]) * err[idx]; +} + __global__ void cudak_(softmax_final)(const MATRIX_ELEM *a, MATRIX_ELEM *b, const MATRIX_ELEM *max, const MATRIX_ELEM *deno, int nrow, int ncol, int stride, int mstride) { @@ -134,6 +146,19 @@ extern "C" { b->stride / sizeof(MATRIX_ELEM)); } + void cudak_(cuda_sigmoid_grad)(const Matrix *output, + const Matrix *err, Matrix *nerr) { + dim3 threadsPerBlock(CUDA_THREADS_N, + CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(nerr->ncol, threadsPerBlock.x), + CEIL_DIV(nerr->nrow, threadsPerBlock.y)); + cudak_(sigmoid_grad)<<<numBlocks, threadsPerBlock>>> \ + (MATRIX_ELEM_PTR(output), MATRIX_ELEM_PTR(err), + MATRIX_ELEM_PTR(nerr), + nerr->nrow, nerr->ncol, + nerr->stride / sizeof(MATRIX_ELEM)); + } + void cudak_(cuda_rowsum)(const Matrix *a, Matrix *b) { dim3 block(CUDA_THREADS_NN, 1); int ncol = a->ncol; diff --git a/matrix/generic/cumatrix.c b/matrix/generic/cumatrix.c index 8de6c1b..2b3b9d4 100644 --- a/matrix/generic/cumatrix.c +++ b/matrix/generic/cumatrix.c @@ -18,6 +18,12 @@ #include "driver_types.h" #include "cublas_v2.h" +#define CHECK_SAME_DIMENSION(a, b) \ + do { \ + if (!(a->nrow == b->nrow && a->ncol == b->ncol)) \ + nerv_error(L, "Matrices should be of the same dimension"); \ + } while (0) + static cublasHandle_t cublas_handle; Matrix *nerv_matrix_(new_)(long nrow, long ncol); @@ -40,8 +46,7 @@ static int nerv_matrix_(add)(lua_State *L) { Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname)); MATRIX_ELEM alpha = luaL_checknumber(L, 4); /* alpha */ MATRIX_ELEM beta = luaL_checknumber(L, 5); /* alpha */ - if (!(a->nrow == b->nrow && a->ncol == b->ncol)) - nerv_error(L, "Matrices should be of the same dimension"); + CHECK_SAME_DIMENSION(a, b); nerv_matrix_(add_)(a, b, c, alpha, beta); return 0; } @@ -91,12 +96,23 @@ static int nerv_matrix_(create)(lua_State *L) { static int nerv_matrix_(sigmoid)(lua_State *L) { Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); - Matrix *b = nerv_matrix_(new_)(a->nrow, a->ncol); + Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname)); + CHECK_SAME_DIMENSION(a, b); cudak_(cuda_sigmoid)(a, b); luaT_pushudata(L, b, nerv_matrix_(tname)); return 1; } +static int nerv_matrix_(sigmoid_grad)(lua_State *L) { + Matrix *nerr = luaT_checkudata(L, 1, nerv_matrix_(tname)); + Matrix *err = luaT_checkudata(L, 2, nerv_matrix_(tname)); + Matrix *output = luaT_checkudata(L, 3, nerv_matrix_(tname)); + CHECK_SAME_DIMENSION(nerr, err); + CHECK_SAME_DIMENSION(nerr, output); + cudak_(cuda_sigmoid_grad)(output, err, nerr); + return 0; +} + static int nerv_matrix_(softmax)(lua_State *L) { Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); Matrix *max = nerv_matrix_(new_)(a->nrow, 1); @@ -158,8 +174,7 @@ extern const char *MATRIX_CUMATRIX_HOST_TNAME; static int nerv_matrix_(copy_from)(lua_State *L) { Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); - if (!(a->nrow == b->nrow && a->ncol == b->ncol)) - nerv_error(L, "Matrices should be of the same dimension"); + CHECK_SAME_DIMENSION(a, b); cudaMemcpy2D(MATRIX_ELEM_PTR(a), a->stride, MATRIX_ELEM_PTR(b), b->stride, sizeof(MATRIX_ELEM) * b->ncol, b->nrow, @@ -170,8 +185,7 @@ static int nerv_matrix_(copy_from)(lua_State *L) { static int nerv_matrix_(copy_to)(lua_State *L) { Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname)); Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME); - if (!(a->nrow == b->nrow && a->ncol == b->ncol)) - nerv_error(L, "Matrices should be of the same dimension"); + CHECK_SAME_DIMENSION(a, b); cudaMemcpy2D(MATRIX_ELEM_PTR(b), b->stride, MATRIX_ELEM_PTR(a), a->stride, sizeof(MATRIX_ELEM) * a->ncol, a->nrow, @@ -197,7 +211,6 @@ static int nerv_matrix_(trans)(lua_State *L) { static const luaL_Reg nerv_matrix_(extra_methods)[] = { {"create", nerv_matrix_(create)}, - {"sigmoid", nerv_matrix_(sigmoid)}, {"softmax", nerv_matrix_(softmax)}, {"colsum", nerv_matrix_(colsum)}, {"rowsum", nerv_matrix_(rowsum)}, @@ -210,6 +223,8 @@ static const luaL_Reg nerv_matrix_(extra_methods)[] = { {"mul", nerv_matrix_(mul)}, {"add_row", nerv_matrix_(add_row)}, {"fill", nerv_matrix_(fill)}, + {"sigmoid", nerv_matrix_(sigmoid)}, + {"sigmoid_grad", nerv_matrix_(sigmoid_grad)}, {NULL, NULL} }; |