#ifdef NERV_GENERIC_CUMATRIX
#include "matrix.h"
#include "elem_type.h"
#define MATRIX_DATA_FREE(L, ptr) cuda_matrix_(free)(L, ptr)
#define MATRIX_DATA_ALLOC(L, dptr, stride, width, height) \
cuda_matrix_(alloc)(L, dptr, stride, width, height)
#define MATRIX_DATA_WRITE(L, data, idx, val) cuda_matrix_(write)(L, data, idx, val)
#define MATRIX_DATA_READ(L, data, idx) cuda_matrix_(read)(L, data, idx)
#define MATRIX_INIT(L) cuda_matrix_(init)(L)
#define MATRIX_BASE_TNAME nerv_matrix_cuda_tname
#define NERV_GENERIC_MATRIX
#define NERV_GENERIC_CUKERNEL
#define PROFILE_HASHMAP_SIZE 123457
#include "../../common.h"
#include "../cukernel.h"
#include "../cuda_helper.h"
#include <string.h>
Matrix *nerv_matrix_(new_)(lua_State *L, long nrow, long ncol);
void nerv_matrix_(data_free)(lua_State *L, Matrix *self);
static void nerv_matrix_(add_)(lua_State *L, const Matrix *a, const Matrix *b,
const Matrix *c,
MATRIX_ELEM alpha, MATRIX_ELEM beta) {
PROFILE_START
CUBLAS_SAFE_CALL(
NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N,
a->ncol, a->nrow,
&alpha,
MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
&beta,
MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM),
MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM)));
PROFILE_STOP
}
static int nerv_matrix_(add)(lua_State *L) {
Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
MATRIX_ELEM alpha = luaL_checknumber(L, 4); /* alpha */
MATRIX_ELEM beta = luaL_checknumber(L, 5); /* alpha */
CHECK_SAME_DIMENSION(a, b);
CHECK_SAME_DIMENSION(a, c);
nerv_matrix_(add_)(L, a, b, c, alpha, beta);
return 0;
}
static int nerv_matrix_(get_cublas_op)(char ch) {
return (ch == 'T' || ch == 't') ? CUBLAS_OP_T : CUBLAS_OP_N;
}
static int nerv_matrix_(mul)(lua_State *L) {
#define SWAP(a, b) \
do { int t = (a); (a) = (b); (b) = t; } while (0)
Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
MATRIX_ELEM alpha = luaL_checknumber(L, 4);
MATRIX_ELEM beta = luaL_checknumber(L, 5);
int nargs = lua_gettop(L);
int ta = nargs > 5 ? nerv_matrix_(get_cublas_op)(*luaL_checkstring(L, 6)) \
: CUBLAS_OP_N;
int tb = nargs > 6 ? nerv_matrix_(get_cublas_op)(*luaL_checkstring(L, 7)) \
: CUBLAS_OP_N;
int am = a->nrow, an = a->ncol;
int bm = b->nrow, bn = b->ncol;
if (ta == CUBLAS_OP_T) SWAP(am, an);
if (tb == CUBLAS_OP_T) SWAP(bm, bn);
if (an != bm)
nerv_error(L, "Wrong dimension of multipliers");
/* MATRIX_ELEM alpha = 1.0f, beta = 0.0f; */
/* Because matrix in Nerv is row-major, here b comes first */
PROFILE_START
CUBLAS_SAFE_CALL(
NERV_CUBLAS_(gemm)(cublas_handle, tb, ta,
bn, am, bm,
&alpha,
MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM),
MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
&beta,
MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM)));
PROFILE_STOP
return 0;
}
static int nerv_matrix_(create)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, a->nrow, a->ncol);
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(sigmoid)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
CHECK_SAME_DIMENSION(a, b);
PROFILE_START
cudak_(cuda_sigmoid)(b, a);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(sigmoid_grad)(lua_State *L) {
Matrix *nerr = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *err = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *output = luaT_checkudata(L, 3, nerv_matrix_(tname));
CHECK_SAME_DIMENSION(nerr, err);
CHECK_SAME_DIMENSION(nerr, output);
PROFILE_START
cudak_(cuda_sigmoid_grad)(output, err, nerr);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(softmax)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *max, *max_idx;
Matrix *dno;
CHECK_SAME_DIMENSION(a, b);
max = nerv_matrix_(new_)(L, a->nrow, 1);
max_idx = nerv_matrix_(new_)(L, a->nrow, 1);
dno = nerv_matrix_(new_)(L, a->nrow, 1);
PROFILE_START
cudak_(cuda_rowmax_idx)(a, max, max_idx);
cudak_(cuda_softmax_denominator)(a, max, dno);
cudak_(cuda_softmax_final)(a, max, dno, b);
PROFILE_STOP
nerv_matrix_(data_free)(L, max);
nerv_matrix_(data_free)(L, dno);
luaT_pushudata(L, max_idx, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(rowsum)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1);
PROFILE_START
cudak_(cuda_rowsum)(a, b);
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(colsum)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, 1, a->ncol);
PROFILE_START
cudak_(cuda_colsum)(a, b);
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(colsame)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *ref = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, 1, a->ncol);
CHECK_SAME_DIMENSION(a, ref);
PROFILE_START
cudak_(cuda_colsame)(a, ref, b);
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(rowmax)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1);
PROFILE_START
cudak_(cuda_rowmax)(a, b);
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(rowmax_idx)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1);
Matrix *idx = nerv_matrix_(new_)(L, a->nrow, 1);
PROFILE_START
cudak_(cuda_rowmax_idx)(a, b, idx);
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
luaT_pushudata(L, idx, nerv_matrix_(tname));
return 2;
}
static int nerv_matrix_(add_row)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
double beta = luaL_checknumber(L, 3);
if (a->ncol != b->ncol)
nerv_error(L, "the number of columns is not the same");
if (a->nrow != 1)
nerv_error(L, "a row vector is expected");
PROFILE_START
cudak_(cuda_add_row)(a, b, beta);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(fill)(lua_State *L) {
Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname));
double val = luaL_checknumber(L, 2);
PROFILE_START
cudak_(cuda_fill)(self, val);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(copy_fromd)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
int nargs = lua_gettop(L);
int b_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0;
int b_end = nargs > 3 ? luaL_checkinteger(L, 4) : b->nrow;
int a_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0;
if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow &&
a_begin + b_end - b_begin <= a->nrow))
nerv_error(L, "invalid copy interval");
if (a->ncol != b->ncol)
nerv_error(L, "matrices should be of the same dimension");
PROFILE_START
CUDA_SAFE_SYNC_CALL(
cudaMemcpy2D(MATRIX_ROW_PTR(a, a_begin), a->stride,
MATRIX_ROW_PTR(b, b_begin), b->stride,
sizeof(MATRIX_ELEM) * b->ncol, b_end - b_begin,
cudaMemcpyDeviceToDevice));
PROFILE_STOP
return 0;
}
extern const char *MATRIX_CUMATRIX_HOST_TNAME;
static int nerv_matrix_(copy_fromh)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME);
int nargs = lua_gettop(L);
int b_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0;
int b_end = nargs > 3 ? luaL_checkinteger(L, 4) : b->nrow;
int a_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0;
if (!(0 <= b_begin && b_begin < b_end && b_end <= b->nrow &&
a_begin + b_end - b_begin <= a->nrow))
nerv_error(L, "invalid copy interval");
if (a->ncol != b->ncol)
nerv_error(L, "matrices should be of the same dimension");
PROFILE_START
CUDA_SAFE_SYNC_CALL(
cudaMemcpy2D(MATRIX_ROW_PTR(a, a_begin), a->stride,
MATRIX_ROW_PTR(b, b_begin), b->stride,
sizeof(MATRIX_ELEM) * b->ncol, b_end - b_begin,
cudaMemcpyHostToDevice));
PROFILE_STOP
return 0;
}
static int nerv_matrix_(copy_toh)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME);
int nargs = lua_gettop(L);
int a_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0;
int a_end = nargs > 3 ? luaL_checkinteger(L, 4) : a->nrow;
int b_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0;
if (!(0 <= a_begin && a_begin < a_end && a_end <= a->nrow &&
b_begin + a_end - a_begin <= b->nrow))
nerv_error(L, "invalid copy interval");
if (b->ncol != a->ncol)
nerv_error(L, "matrices should be of the same dimension");
PROFILE_START
CUDA_SAFE_SYNC_CALL(
cudaMemcpy2D(MATRIX_ROW_PTR(b, b_begin), b->stride,
MATRIX_ROW_PTR(a, a_begin), a->stride,
sizeof(MATRIX_ELEM) * a->ncol, a_end - a_begin,
cudaMemcpyDeviceToHost));
PROFILE_STOP
return 0;
}
static int nerv_matrix_(trans)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = nerv_matrix_(new_)(L, a->ncol, a->nrow);
MATRIX_ELEM alpha = 1, beta = 0;
/* FIXME: possible memory leak when lua error is raised */
PROFILE_START
CUBLAS_SAFE_CALL(
NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_T,
a->nrow, a->ncol,
&alpha,
MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
&beta,
MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM)));
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(mul_elem)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
CHECK_SAME_DIMENSION(a, b);
CHECK_SAME_DIMENSION(a, c);
PROFILE_START
cudak_(cuda_mul_elem)(a, b, c);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(log_elem)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
CHECK_SAME_DIMENSION(a, b);
PROFILE_START
cudak_(cuda_log_elem)(a, b);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(decompress)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b;
int orig_col = luaL_checkinteger(L, 2);
if (a->ncol != 1)
nerv_error(L, "the compressed matrix must be a column vector");
b = nerv_matrix_(new_)(L, a->nrow, orig_col);
PROFILE_START
cudak_(cuda_fill)(b, 0.0);
cudak_(cuda_decompress)(a, b);
PROFILE_STOP
luaT_pushudata(L, b, nerv_matrix_(tname));
return 1;
}
extern const char *nerv_matrix_host_int_tname;
static int nerv_matrix_(copy_rows_fromh_by_idx)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME);
Matrix *idx = luaT_checkudata(L, 3, nerv_matrix_host_int_tname);
long nrow = a->nrow;
int b_begin = lua_gettop(L) > 3 ? luaL_checkinteger(L, 4) : 0;
if (!(0 <= b_begin && b_begin + nrow <= idx->ncol))
nerv_error(L, "invalid copy interval");
long *idx_ptr = idx->data.i;
int i;
if (idx->nrow != 1)
nerv_error(L, "index should be a vector");
if (a->ncol != b->ncol)
nerv_error(L, "source/destination dimension mismatch");
cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t) * nrow);
for (i = 0; i < nrow; i++)
{
int src_row = idx_ptr[b_begin + i];
if (!(0 <= src_row && src_row < b->nrow))
nerv_error(L, "invalid index");
CUDA_SAFE_CALL(cudaStreamCreate(streams + i));
CUDA_SAFE_CALL(cudaMemcpyAsync(MATRIX_ROW_PTR(a, i),
MATRIX_ROW_PTR(b, src_row),
b->stride,
cudaMemcpyHostToDevice, streams[i]));
}
for (i = 0; i < nrow; i++)
{
CUDA_SAFE_CALL(cudaStreamSynchronize(streams[i]));
CUDA_SAFE_CALL(cudaStreamDestroy(streams[i]));
}
free(streams);
return 0;
}
static int nerv_matrix_(expand_frm)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
int context = luaL_checkinteger(L, 3);
if (a->nrow != b->nrow)
nerv_error(L, "mismatching number of frames");
if (a->ncol != b->ncol * (context * 2 + 1))
nerv_error(L, "the width should be 2 * context + 1");
PROFILE_START
cudak_(cuda_expand_frm)(b, a, context);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(rearrange_frm)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
int step = luaL_checkinteger(L, 3);
CHECK_SAME_DIMENSION(a, b);
if (b->ncol % step)
nerv_error(L, "the dimension of columns is not divisible by step");
PROFILE_START
cudak_(cuda_rearrange_frm)(b, a, step);
PROFILE_STOP
return 0;
}
static int nerv_matrix_(scale_row)(lua_State *L) {
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
if (a->ncol != b->ncol)
nerv_error(L, "the number of columns is not the same");
if (b->nrow != 1)
nerv_error(L, "a row vector is expected");
PROFILE_START
cudak_(cuda_scale_row)(b, a);
PROFILE_STOP
return 0;
}
static const luaL_Reg nerv_matrix_(extra_methods)[] = {
{"create", nerv_matrix_(create)},
{"colsum", nerv_matrix_(colsum)},
{"colsame", nerv_matrix_(colsame)},
{"rowsum", nerv_matrix_(rowsum)},
{"rowmax", nerv_matrix_(rowmax)},
{"rowmax_idx", nerv_matrix_(rowmax_idx)},
{"trans", nerv_matrix_(trans)},
{"decompress", nerv_matrix_(decompress)},
/* in-place calc */
{"copy_fromh", nerv_matrix_(copy_fromh)},
{"copy_fromd", nerv_matrix_(copy_fromd)},
{"copy_toh", nerv_matrix_(copy_toh)},
{"add", nerv_matrix_(add)},
{"mul", nerv_matrix_(mul)},
{"add_row", nerv_matrix_(add_row)},
{"fill", nerv_matrix_(fill)},
{"sigmoid", nerv_matrix_(sigmoid)},
{"sigmoid_grad", nerv_matrix_(sigmoid_grad)},
{"softmax", nerv_matrix_(softmax)},
{"mul_elem", nerv_matrix_(mul_elem)},
{"log_elem", nerv_matrix_(log_elem)},
{"copy_rows_fromh_by_idx", nerv_matrix_(copy_rows_fromh_by_idx)},
{"expand_frm", nerv_matrix_(expand_frm)},
{"rearrange_frm", nerv_matrix_(rearrange_frm)},
{"scale_row", nerv_matrix_(scale_row)},
{NULL, NULL}
};
static void cuda_matrix_(init)(lua_State *L) {
luaN_append_methods(L, nerv_matrix_(extra_methods));
cublasCreate(&cublas_handle);
profile = hashmap_create(PROFILE_HASHMAP_SIZE, bkdr_hash, strcmp);
}
static void cuda_matrix_(free)(lua_State *L, MATRIX_ELEM *ptr) {
CUDA_SAFE_SYNC_CALL(cudaFree(ptr));
}
static void cuda_matrix_(alloc)(lua_State *L, MATRIX_ELEM **dptr,
size_t *stride, long width, long height) {
PROFILE_START
CUDA_SAFE_SYNC_CALL(cudaMallocPitch((void **)dptr, stride, width, height));
PROFILE_STOP
}
static MATRIX_ELEM cuda_matrix_(read)(lua_State *L, MATRIX_ELEM *data,
int idx) {
MATRIX_ELEM res;
CUDA_SAFE_SYNC_CALL(cudaMemcpy(&res, data + idx,
sizeof(MATRIX_ELEM), cudaMemcpyDeviceToHost));
return res;
}
static void cuda_matrix_(write)(lua_State *L, MATRIX_ELEM *data,
int idx, MATRIX_ELEM val) {
CUDA_SAFE_SYNC_CALL(cudaMemcpy(data + idx, &val,
sizeof(MATRIX_ELEM), cudaMemcpyHostToDevice));
}
int nerv_matrix_(get_elem)(lua_State *L) {
return nerv_error_method_not_implemented(L);
}
int nerv_matrix_(set_elem)(lua_State *L) {
return nerv_error_method_not_implemented(L);
}
#include "matrix.c"
#endif