#include <assert.h>
#include <stdio.h>
#include "generic/matrix.h"
#include "cuda.h"
#define CUDA_THREADS_N 16
#define CUDA_THREADS_NN (16 * 16)
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
__global__ void sigmoid(const float *a, float *b,
int nrow, int ncol, int stride) {
int j = blockIdx.x * blockDim.x + threadIdx.x;
int i = blockIdx.y * blockDim.y + threadIdx.y;
long idx;
if (i >= nrow || j >= ncol) return;
idx = j + i * stride;
b[idx] = 1.0 / (1.0 + exp(-a[idx]));
}
__global__ void softmax_final(const float *a, float *b,
const float *max, const float *deno,
int nrow, int ncol, int stride, int mstride) {
int j = blockIdx.x * blockDim.x + threadIdx.x;
int i = blockIdx.y * blockDim.y + threadIdx.y;
long idx;
if (i >= nrow || j >= ncol) return;
idx = j + i * stride;
b[idx] = exp(a[idx] - max[0 + i * mstride]) / deno[0 + i * mstride];
}
__global__ void block_reduce_sum(const float *input, float *output,
const int istride, const int ostride,
const int n) {
extern __shared__ float arr[];
int j = blockIdx.x * blockDim.x + threadIdx.x;
arr[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : 0;
__syncthreads();
for (int offset = blockDim.x >> 1; offset; offset >>= 1)
{
if (threadIdx.x < offset)
arr[threadIdx.x] += arr[threadIdx.x + offset];
__syncthreads();
}
if (threadIdx.x == 0)
output[blockIdx.x + ostride * blockIdx.y] = arr[0];
}
__global__ void block_reduce_softmax_sum(const float *input, float *output,
const float *max,
const int istride, const int ostride,
const int mstride, const int n) {
extern __shared__ float arr[];
int j = blockIdx.x * blockDim.x + threadIdx.x;
arr[threadIdx.x] = j < n ? exp(input[j + istride * blockIdx.y] - \
max[0 + mstride * blockIdx.y]) : 0;
__syncthreads();
for (int offset = blockDim.x >> 1; offset; offset >>= 1)
{
if (threadIdx.x < offset)
arr[threadIdx.x] += arr[threadIdx.x + offset];
__syncthreads();
}
if (threadIdx.x == 0)
output[blockIdx.x + ostride * blockIdx.y] = arr[0];
}
__global__ void block_reduce_max(const float *input, float *output,
const int istride, const int ostride,
const int n) {
extern __shared__ float arr[];
int j = blockIdx.x * blockDim.x + threadIdx.x;
arr[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : 0;
__syncthreads();
for (int offset = blockDim.x >> 1; offset; offset >>= 1)
{
if (threadIdx.x < offset)
{
float l = arr[threadIdx.x],
r = arr[threadIdx.x + offset];
if (r > l) arr[threadIdx.x] = r;
}
__syncthreads();
}
if (threadIdx.x == 0)
output[blockIdx.x + ostride * blockIdx.y] = arr[0];
}
extern "C" {
void cuda_sigmoid(const Matrix *a, Matrix *b) {
dim3 threadsPerBlock(CUDA_THREADS_N,
CUDA_THREADS_N);
dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x),
CEIL_DIV(b->nrow, threadsPerBlock.y));
sigmoid<<<numBlocks, threadsPerBlock>>>(a->data.f, b->data.f, b->nrow, b->ncol,
b->stride / sizeof(float));
}
void cuda_colsum(const Matrix *a, Matrix *b) {
dim3 block(CUDA_THREADS_NN, 1);
int ncol = a->ncol;
int blocks_per_row = CEIL_DIV(ncol, block.x);
dim3 grid(blocks_per_row, a->nrow);
float *res;
size_t stride;
cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(float), a->nrow);
block_reduce_sum<<<grid, block, block.x * sizeof(float)>>> \
(a->data.f, res,
a->stride / sizeof(float), stride / sizeof(float),
ncol);
ncol = blocks_per_row;
assert(ncol <= block.x);
grid.x = 1;
block_reduce_sum<<<grid, block, block.x * sizeof(float)>>> \
(res, b->data.f,
stride / sizeof(float), b->stride / sizeof(float),
ncol);
cudaFree(res);
}
void cuda_softmax_final(const Matrix *a, const Matrix *max,
const Matrix *deno, Matrix *b) {
dim3 threadsPerBlock(CUDA_THREADS_N,
CUDA_THREADS_N);
dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x),
CEIL_DIV(b->nrow, threadsPerBlock.y));
softmax_final<<<numBlocks, threadsPerBlock>>>(a->data.f, b->data.f,
max->data.f, deno->data.f,
b->nrow, b->ncol,
b->stride / sizeof(float),
max->stride / sizeof(float));
}
void cuda_softmax_denominator(const Matrix *a, const Matrix *max, Matrix *b) {
dim3 block(CUDA_THREADS_NN, 1);
int ncol = a->ncol;
int blocks_per_row = CEIL_DIV(ncol, block.x);
dim3 grid(blocks_per_row, a->nrow);
float *res;
size_t stride;
assert(max->ncol == 1);
cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(float), a->nrow);
block_reduce_softmax_sum<<<grid, block, block.x * sizeof(float)>>> \
(a->data.f, res, max->data.f,
a->stride / sizeof(float), stride / sizeof(float),
max->stride / sizeof(float),
ncol);
ncol = blocks_per_row;
assert(ncol <= block.x);
grid.x = 1;
block_reduce_sum<<<grid, block, block.x * sizeof(float)>>> \
(res, b->data.f,
stride / sizeof(float), b->stride / sizeof(float),
ncol);
cudaFree(res);
}
void cuda_colmax(const Matrix *a, Matrix *b) {
dim3 block(CUDA_THREADS_NN, 1);
int ncol = a->ncol;
int blocks_per_row = CEIL_DIV(ncol, block.x);
dim3 grid(blocks_per_row, a->nrow);
float *res;
size_t stride;
cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(float), a->nrow);
block_reduce_max<<<grid, block, block.x * sizeof(float)>>> \
(a->data.f, res,
a->stride / sizeof(float), stride / sizeof(float),
ncol);
ncol = blocks_per_row;
assert(ncol <= block.x);
grid.x = 1;
block_reduce_max<<<grid, block, block.x * sizeof(float)>>> \
(res, b->data.f,
stride / sizeof(float), b->stride / sizeof(float),
ncol);
cudaFree(res);
}
}