blob: 3dfebc5999e83b773b625dbe542e5a1fbad41a29 (
plain) (
tree)
|
|
local SoftmaxCELayer = nerv.class("nerv.SoftmaxCELayer", "nerv.Layer")
function SoftmaxCELayer:__init(id, global_conf, layer_conf)
self.id = id
self.gconf = global_conf
self.dim_in = layer_conf.dim_in
self.dim_out = layer_conf.dim_out
self:check_dim_len(2, -1) -- two inputs: nn output and label
end
function SoftmaxCELayer:init()
if self.dim_in[1] ~= self.dim_in[1] then
nerv.error("mismatching dimensions of previous network output and labels")
end
self.total_ce = 0.0
self.total_frames = 0
end
function SoftmaxCELayer:update(bp_err, input, output)
-- no params, therefore do nothing
end
function SoftmaxCELayer:propagate(input, output)
local soutput = input[1]:create() -- temporary value for calc softmax
self.soutput = soutput
soutput:softmax(input[1])
local ce = soutput:create()
ce:log_elem(soutput)
ce:mul_elem(ce, input[2])
-- add total ce
self.total_ce = self.total_ce - ce:rowsum():colsum()[0]
self.total_frames = self.total_frames + soutput:nrow()
end
function SoftmaxCELayer:back_propagate(next_bp_err, bp_err, input, output)
-- softmax output - label
next_bp_err[1]:add(self.soutput, input[1], 1.0, -1.0)
end
|