blob: daf891eee8d38ec3a164b99e18f6a791d38a801a (
plain) (
tree)
|
|
local SoftmaxCELayer = nerv.class("nerv.SoftmaxCELayer", "nerv.Layer")
function SoftmaxCELayer:__init(id, global_conf, layer_conf)
self.id = id
self.gconf = global_conf
self.dim_in = layer_conf.dim_in
self.dim_out = layer_conf.dim_out
self.compressed = layer_conf.compressed
if self.compressed == nil then
self.compressed = false
end
self:check_dim_len(2, -1) -- two inputs: nn output and label
end
function SoftmaxCELayer:init(batch_size)
if not self.compressed and (self.dim_in[1] ~= self.dim_in[2]) then
nerv.error("mismatching dimensions of previous network output and labels")
end
self.total_ce = 0.0
self.total_correct = 0
self.total_frames = 0
self.softmax = self.gconf.cumat_type(batch_size, self.dim_in[1])
self.ce = self.softmax:create()
end
function SoftmaxCELayer:update(bp_err, input, output)
-- no params, therefore do nothing
end
function SoftmaxCELayer:propagate(input, output)
local softmax = self.softmax
local ce = self.ce
local classified = softmax:softmax(input[1])
local label = input[2]
ce:log_elem(softmax)
if self.compressed then
label = label:decompress(input[1]:ncol())
end
ce:mul_elem(ce, label)
ce = ce:rowsum()
if output[1] ~= nil then
output[1]:copy_fromd(ce)
end
-- add total ce
self.total_ce = self.total_ce - ce:colsum()[0]
self.total_frames = self.total_frames + softmax:nrow()
-- TODO: add colsame for uncompressed label
if self.compressed then
self.total_correct = self.total_correct + classified:colsame(input[2])[0]
end
end
function SoftmaxCELayer:back_propagate(bp_err, next_bp_err, input, output)
-- softmax output - label
local label = input[2]
if self.compressed then
label = label:decompress(input[1]:ncol())
end
local nbe = next_bp_err[1]
nbe:add(self.softmax, label, 1.0, -1.0)
if bp_err[1] ~= nil then
nbe:scale_rows_by_col(bp_err[1])
end
end
function SoftmaxCELayer:get_params()
return nerv.ParamRepo({})
end
|