1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
#include <cstdio>
#include <fstream>
#include <string>
#include <cstring>
#include <cassert>
#include <cstdlib>
char token[1024];
char output[1024];
double **new_matrix(int nrow, int ncol) {
double **mat = new double *[nrow];
int i;
for (i = 0; i < nrow; i++)
mat[i] = new double[ncol];
return mat;
}
void free_matrix(double **mat, int nrow, int ncol) {
int i;
for (i = 0; i < nrow; i++)
delete [] mat[i];
delete [] mat;
}
int main(int argc, char **argv) {
FILE *fin;
std::ofstream fout;
assert(argc >= 3);
fin = fopen(argv[1], "r");
fout.open(argv[2]);
assert(fin != NULL);
int cnt = argc > 3 ? atoi(argv[3]) : 0;
bool shift;
while (fscanf(fin, "%s", token) != EOF)
{
int nrow, ncol;
int i, j;
double **mat;
if (strcmp(token, "<AffineTransform>") == 0)
{
double lrate, blrate, mnorm;
fscanf(fin, "%d %d", &ncol, &nrow);
fscanf(fin, "%s %lf %s %lf %s %lf",
token, &lrate, token, &blrate, token, &mnorm);
fscanf(fin, "%s", token);
assert(*token == '[');
printf("%d %d\n", nrow, ncol);
mat = new_matrix(nrow, ncol);
for (j = 0; j < ncol; j++)
for (i = 0; i < nrow; i++)
fscanf(fin, "%lf", mat[i] + j);
long base = fout.tellp();
sprintf(output, "%16d", 0);
fout << output;
sprintf(output, "{type=\"nerv.LinearTransParam\",id=\"affine%d_ltp\"}\n",
cnt);
fout << output;
sprintf(output, "%d %d\n", nrow, ncol);
fout << output;
for (i = 0; i < nrow; i++)
{
for (j = 0; j < ncol; j++)
fout << mat[i][j] << " ";
fout << std::endl;
}
long length = fout.tellp() - base;
fout.seekp(base);
sprintf(output, "[%13lu]\n", length);
fout << output;
fout.seekp(0, std::ios_base::end);
fscanf(fin, "%s", token);
assert(*token == ']');
if (fscanf(fin, "%s", token) == 1 && *token == '[')
{
base = fout.tellp();
for (j = 0; j < ncol; j++)
fscanf(fin, "%lf", mat[0] + j);
sprintf(output, "%16d", 0);
fout << output;
sprintf(output, "{type=\"nerv.BiasParam\",id=\"affine%d_bp\"}\n",
cnt);
fout << output;
sprintf(output, "1 %d\n", ncol);
fout << output;
for (j = 0; j < ncol; j++)
fout << mat[0][j] << " ";
fout << std::endl;
length = fout.tellp() - base;
fout.seekp(base);
sprintf(output, "[%13lu]\n", length);
fout << output;
fout.seekp(0, std::ios_base::end);
cnt++;
}
free_matrix(mat, nrow, ncol);
}
else if ((shift = (strcmp(token, "<AddShift>") == 0)) ||
strcmp(token, "<Rescale>") == 0)
{
double lrate, blrate, mnorm;
fscanf(fin, "%d %d", &ncol, &ncol);
mat = new_matrix(1, ncol);
fscanf(fin, "%s %lf",
token, &lrate);
fscanf(fin, "%s", token);
assert(*token == '[');
printf("%d\n", ncol);
for (j = 0; j < ncol; j++)
fscanf(fin, "%lf", mat[0] + j);
long base = fout.tellp();
sprintf(output, "%16d", 0);
fout << output;
sprintf(output, "{type=\"nerv.BiasParam\",id=\"%s%d\"}\n",
shift ? "bias" : "window",
cnt);
fout << output;
sprintf(output, "%d %d\n", 1, ncol);
fout << output;
for (j = 0; j < ncol; j++)
fout << mat[0][j] << " ";
fout << std::endl;
long length = fout.tellp() - base;
fout.seekp(base);
sprintf(output, "[%13lu]\n", length);
fout << output;
fout.seekp(0, std::ios_base::end);
fscanf(fin, "%s", token);
assert(*token == ']');
free_matrix(mat, 1, ncol);
}
}
return 0;
}
|