summaryrefslogtreecommitdiff
path: root/kaldi_io/tools/kaldi_to_nerv.cpp
blob: f16de44a90b413a824259be439e76ed82c32b8eb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <cstdio>
#include <fstream>
#include <string>
#include <cstring>
#include <cassert>
#include <cstdlib>

char token[1024];
char output[1024];

double **new_matrix(int nrow, int ncol) {
    double **mat = new double *[nrow];
    int i;
    for (i = 0; i < nrow; i++)
        mat[i] = new double[ncol];
    return mat;
}

void free_matrix(double **mat, int nrow, int ncol) {
    int i;
    for (i = 0; i < nrow; i++)
        delete [] mat[i];
    delete [] mat;
}

int main(int argc, char **argv) {
    FILE *fin;
    std::ofstream fout;
    assert(argc >= 3);
    fin = fopen(argv[1], "r");
    fout.open(argv[2]);
    assert(fin != NULL);
    int cnt = argc > 3 ? atoi(argv[3]) : 0;
    bool shift;
    while (fscanf(fin, "%s", token) != EOF)
    {
        int nrow, ncol;
        int i, j;
        double **mat;
        if (strcmp(token, "<AffineTransform>") == 0)
        {
            double lrate, blrate, mnorm;
            fscanf(fin, "%d %d", &ncol, &nrow);
            fscanf(fin, "%s %lf %s %lf %s %lf",
                    token, &lrate, token, &blrate, token, &mnorm);
            fscanf(fin, "%s", token);
            assert(*token == '[');
            printf("%d %d\n", nrow, ncol);
            mat = new_matrix(nrow, ncol);
            for (j = 0; j < ncol; j++)
                for (i = 0; i < nrow; i++)
                    fscanf(fin, "%lf", mat[i] + j);
            long base = fout.tellp();
            sprintf(output, "%16d", 0);
            fout << output;
            sprintf(output, "{type=\"nerv.LinearTransParam\",id=\"affine%d_ltp\"}\n",
                    cnt);
            fout << output;
            sprintf(output, "%d %d\n", nrow, ncol);
            fout << output;
            for (i = 0; i < nrow; i++)
            {
                for (j = 0; j < ncol; j++)
                    fout << mat[i][j] << " ";
                fout << std::endl;
            }
            long length = fout.tellp() - base;
            fout.seekp(base);
            sprintf(output, "[%13lu]\n", length);
            fout << output;
            fout.seekp(0, std::ios_base::end);
            fscanf(fin, "%s", token);
            assert(*token == ']');
            if (fscanf(fin, "%s", token) == 1 && *token == '[')
            {
                base = fout.tellp();
                for (j = 0; j < ncol; j++)
                    fscanf(fin, "%lf", mat[0] + j);
                sprintf(output, "%16d", 0);
                fout << output;
                sprintf(output, "{type=\"nerv.BiasParam\",id=\"affine%d_bp\"}\n",
                        cnt);
                fout << output;
                sprintf(output, "1 %d\n", ncol);
                fout << output;
                for (j = 0; j < ncol; j++)
                    fout << mat[0][j] << " ";
                fout << std::endl;
                length = fout.tellp() - base;
                fout.seekp(base);
                sprintf(output, "[%13lu]\n", length);
                fout << output;
                fout.seekp(0, std::ios_base::end);
                cnt++;
            }
            free_matrix(mat, nrow, ncol);
        }
        else if ((shift = (strcmp(token, "<AddShift>") == 0)) ||
                strcmp(token, "<Rescale>") == 0)
        {
            double lrate, blrate, mnorm;
            fscanf(fin, "%d %d", &ncol, &ncol);
            mat = new_matrix(1, ncol);
            fscanf(fin, "%s %lf",
                    token, &lrate);
            fscanf(fin, "%s", token);
            assert(*token == '[');
            printf("%d\n", ncol);
            for (j = 0; j < ncol; j++)
                    fscanf(fin, "%lf", mat[0] + j);
            long base = fout.tellp();
            sprintf(output, "%16d", 0);
            fout << output;
            sprintf(output, "{type=\"nerv.BiasParam\",id=\"%s%d\"}\n",
                    shift ? "bias" : "window",
                    cnt);
            fout << output;
            sprintf(output, "%d %d\n", 1, ncol);
            fout << output;
            for (j = 0; j < ncol; j++)
                fout << mat[0][j] << " ";
            fout << std::endl;
            long length = fout.tellp() - base;
            fout.seekp(base);
            sprintf(output, "[%13lu]\n", length);
            fout << output;
            fout.seekp(0, std::ios_base::end);
            fscanf(fin, "%s", token);
            assert(*token == ']');
            free_matrix(mat, 1, ncol);
        }
    }
    return 0;
}