1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
// state-table.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Michael Riley)
//
// \file
// Classes for representing the mapping between state tuples and state Ids.
#ifndef FST_LIB_STATE_TABLE_H__
#define FST_LIB_STATE_TABLE_H__
#include <deque>
using std::deque;
#include <vector>
using std::vector;
#include <fst/bi-table.h>
#include <fst/expanded-fst.h>
namespace fst {
// STATE TABLES - these determine the bijective mapping between state
// tuples (e.g. in composition triples of two FST states and a
// composition filter state) and their corresponding state IDs.
// They are classes, templated on state tuples, of the form:
//
// template <class T>
// class StateTable {
// public:
// typedef typename T StateTuple;
//
// // Required constructors.
// StateTable();
//
// // Lookup state ID by tuple. If it doesn't exist, then add it.
// StateId FindState(const StateTuple &);
// // Lookup state tuple by state ID.
// const StateTuple<StateId> &Tuple(StateId) const;
// // # of stored tuples.
// StateId Size() const;
// };
//
// A state tuple has the form:
//
// template <class S>
// struct StateTuple {
// typedef typename S StateId;
//
// // Required constructors.
// StateTuple();
// StateTuple(const StateTuple &);
// };
// An implementation using a hash map for the tuple to state ID mapping.
// The state tuple T must have == defined. H is the hash function.
template <class T, class H>
class HashStateTable : public HashBiTable<typename T::StateId, T, H> {
public:
typedef T StateTuple;
typedef typename StateTuple::StateId StateId;
using HashBiTable<StateId, T, H>::FindId;
using HashBiTable<StateId, T, H>::FindEntry;
using HashBiTable<StateId, T, H>::Size;
HashStateTable() : HashBiTable<StateId, T, H>() {}
// Reserves space for table_size elements.
explicit HashStateTable(size_t table_size)
: HashBiTable<StateId, T, H>(table_size) {}
StateId FindState(const StateTuple &tuple) { return FindId(tuple); }
const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};
// An implementation using a hash map for the tuple to state ID mapping.
// The state tuple T must have == defined. H is the hash function.
template <class T, class H>
class CompactHashStateTable
: public CompactHashBiTable<typename T::StateId, T, H> {
public:
typedef T StateTuple;
typedef typename StateTuple::StateId StateId;
using CompactHashBiTable<StateId, T, H>::FindId;
using CompactHashBiTable<StateId, T, H>::FindEntry;
using CompactHashBiTable<StateId, T, H>::Size;
CompactHashStateTable() : CompactHashBiTable<StateId, T, H>() {}
// Reserves space for 'table_size' elements.
explicit CompactHashStateTable(size_t table_size)
: CompactHashBiTable<StateId, T, H>(table_size) {}
StateId FindState(const StateTuple &tuple) { return FindId(tuple); }
const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};
// An implementation using a vector for the tuple to state mapping.
// It is passed a function object FP that should fingerprint tuples
// uniquely to an integer that can used as a vector index. Normally,
// VectorStateTable constructs the FP object. The user can instead
// pass in this object; in that case, VectorStateTable takes its
// ownership.
template <class T, class FP>
class VectorStateTable
: public VectorBiTable<typename T::StateId, T, FP> {
public:
typedef T StateTuple;
typedef typename StateTuple::StateId StateId;
using VectorBiTable<StateId, T, FP>::FindId;
using VectorBiTable<StateId, T, FP>::FindEntry;
using VectorBiTable<StateId, T, FP>::Size;
using VectorBiTable<StateId, T, FP>::Fingerprint;
// Reserves space for 'table_size' elements.
explicit VectorStateTable(FP *fp = 0, size_t table_size = 0)
: VectorBiTable<StateId, T, FP>(fp, table_size) {}
StateId FindState(const StateTuple &tuple) { return FindId(tuple); }
const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};
// An implementation using a vector and a compact hash table. The
// selecting functor S returns true for tuples to be hashed in the
// vector. The fingerprinting functor FP returns a unique fingerprint
// for each tuple to be hashed in the vector (these need to be
// suitable for indexing in a vector). The hash functor H is used when
// hashing tuple into the compact hash table.
template <class T, class S, class FP, class H>
class VectorHashStateTable
: public VectorHashBiTable<typename T::StateId, T, S, FP, H> {
public:
typedef T StateTuple;
typedef typename StateTuple::StateId StateId;
using VectorHashBiTable<StateId, T, S, FP, H>::FindId;
using VectorHashBiTable<StateId, T, S, FP, H>::FindEntry;
using VectorHashBiTable<StateId, T, S, FP, H>::Size;
using VectorHashBiTable<StateId, T, S, FP, H>::Selector;
using VectorHashBiTable<StateId, T, S, FP, H>::Fingerprint;
using VectorHashBiTable<StateId, T, S, FP, H>::Hash;
VectorHashStateTable(S *s, FP *fp, H *h,
size_t vector_size = 0,
size_t tuple_size = 0)
: VectorHashBiTable<StateId, T, S, FP, H>(
s, fp, h, vector_size, tuple_size) {}
StateId FindState(const StateTuple &tuple) { return FindId(tuple); }
const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};
// An implementation using a hash map for the tuple to state ID
// mapping. This version permits erasing of states. The state tuple T
// must have == defined and its default constructor must produce a
// tuple that will never be seen. F is the hash function.
template <class T, class F>
class ErasableStateTable : public ErasableBiTable<typename T::StateId, T, F> {
public:
typedef T StateTuple;
typedef typename StateTuple::StateId StateId;
using ErasableBiTable<StateId, T, F>::FindId;
using ErasableBiTable<StateId, T, F>::FindEntry;
using ErasableBiTable<StateId, T, F>::Size;
using ErasableBiTable<StateId, T, F>::Erase;
ErasableStateTable() : ErasableBiTable<StateId, T, F>() {}
StateId FindState(const StateTuple &tuple) { return FindId(tuple); }
const StateTuple &Tuple(StateId s) const { return FindEntry(s); }
};
//
// COMPOSITION STATE TUPLES AND TABLES
//
// The composition state table has the form:
//
// template <class A, class F>
// class ComposeStateTable {
// public:
// typedef A Arc;
// typedef F FilterState;
// typedef typename A::StateId StateId;
// typedef ComposeStateTuple<StateId> StateTuple;
//
// // Required constructors. Copy constructor does not copy state.
// ComposeStateTable(const Fst<Arc> &fst1, const Fst<Arc> &fst2);
// ComposeStateTable(const ComposeStateTable<A, F> &table);
// // Lookup state ID by tuple. If it doesn't exist, then add it.
// StateId FindState(const StateTuple &);
// // Lookup state tuple by state ID.
// const StateTuple<StateId> &Tuple(StateId) const;
// // # of stored tuples.
// StateId Size() const;
// // Return true if error encountered
// bool Error() const;
// };
// Represents the composition state.
template <typename S, typename F>
struct ComposeStateTuple {
typedef S StateId;
typedef F FilterState;
ComposeStateTuple()
: state_id1(kNoStateId), state_id2(kNoStateId),
filter_state(FilterState::NoState()) {}
ComposeStateTuple(StateId s1, StateId s2, const FilterState &f)
: state_id1(s1), state_id2(s2), filter_state(f) {}
StateId state_id1; // State Id on fst1
StateId state_id2; // State Id on fst2
FilterState filter_state; // State of composition filter
};
// Equality of composition state tuples.
template <typename S, typename F>
inline bool operator==(const ComposeStateTuple<S, F>& x,
const ComposeStateTuple<S, F>& y) {
if (&x == &y)
return true;
return x.state_id1 == y.state_id1 &&
x.state_id2 == y.state_id2 &&
x.filter_state == y.filter_state;
}
// Hashing of composition state tuples.
template <typename S, typename F>
class ComposeHash {
public:
size_t operator()(const ComposeStateTuple<S, F>& t) const {
return t.state_id1 + t.state_id2 * kPrime0 +
t.filter_state.Hash() * kPrime1;
}
private:
static const size_t kPrime0;
static const size_t kPrime1;
};
template <typename S, typename F>
const size_t ComposeHash<S, F>::kPrime0 = 7853;
template <typename S, typename F>
const size_t ComposeHash<S, F>::kPrime1 = 7867;
// A HashStateTable over composition tuples.
template <typename A,
typename F,
typename H =
CompactHashStateTable<ComposeStateTuple<typename A::StateId, F>,
ComposeHash<typename A::StateId, F> > >
class GenericComposeStateTable : public H {
public:
typedef A Arc;
typedef typename A::StateId StateId;
typedef F FilterState;
typedef ComposeStateTuple<StateId, F> StateTuple;
GenericComposeStateTable(const Fst<A> &fst1, const Fst<A> &fst2) {}
// Reserves space for 'table_size' elements.
GenericComposeStateTable(const Fst<A> &fst1, const Fst<A> &fst2,
size_t table_size) : H(table_size) {}
bool Error() const { return false; }
private:
void operator=(const GenericComposeStateTable<A, F> &table); // disallow
};
// Fingerprint for general composition tuples.
template <typename S, typename F>
class ComposeFingerprint {
public:
typedef S StateId;
typedef F FilterState;
typedef ComposeStateTuple<S, F> StateTuple;
// Required but suboptimal constructor.
ComposeFingerprint() : mult1_(8192), mult2_(8192) {
LOG(WARNING) << "TupleFingerprint: # of FST states should be provided.";
}
// Constructor is provided the sizes of the input FSTs
ComposeFingerprint(StateId nstates1, StateId nstates2)
: mult1_(nstates1), mult2_(nstates1 * nstates2) { }
size_t operator()(const StateTuple &tuple) {
return tuple.state_id1 + tuple.state_id2 * mult1_ +
tuple.filter_state.Hash() * mult2_;
}
private:
ssize_t mult1_;
ssize_t mult2_;
};
// Useful when the first composition state determines the tuple.
template <typename S, typename F>
class ComposeState1Fingerprint {
public:
typedef S StateId;
typedef F FilterState;
typedef ComposeStateTuple<S, F> StateTuple;
size_t operator()(const StateTuple &tuple) { return tuple.state_id1; }
};
// Useful when the second composition state determines the tuple.
template <typename S, typename F>
class ComposeState2Fingerprint {
public:
typedef S StateId;
typedef F FilterState;
typedef ComposeStateTuple<S, F> StateTuple;
size_t operator()(const StateTuple &tuple) { return tuple.state_id2; }
};
// A VectorStateTable over composition tuples. This can be used when
// the product of number of states in FST1 and FST2 (and the
// composition filter state hash) is manageable. If the FSTs are not
// expanded Fsts, they will first have their states counted.
template <typename A, typename F>
class ProductComposeStateTable : public
VectorStateTable<ComposeStateTuple<typename A::StateId, F>,
ComposeFingerprint<typename A::StateId, F> > {
public:
typedef A Arc;
typedef typename A::StateId StateId;
typedef F FilterState;
typedef ComposeStateTuple<StateId, F> StateTuple;
typedef VectorStateTable<StateTuple,
ComposeFingerprint<StateId, F> > StateTable;
// Reserves space for 'table_size' elements.
ProductComposeStateTable(const Fst<A> &fst1, const Fst<A> &fst2,
size_t table_size = 0)
: StateTable(new ComposeFingerprint<StateId, F>(CountStates(fst1),
CountStates(fst2)),
table_size) {}
ProductComposeStateTable(const ProductComposeStateTable<A, F> &table)
: StateTable(new ComposeFingerprint<StateId, F>(table.Fingerprint())) {}
bool Error() const { return false; }
private:
void operator=(const ProductComposeStateTable<A, F> &table); // disallow
};
// A VectorStateTable over composition tuples. This can be used when
// FST1 is a string (satisfies kStringProperties) and FST2 is
// epsilon-free and deterministic. It should be used with a
// composition filter that creates at most one filter state per tuple
// under these conditions (e.g. SequenceComposeFilter or
// MatchComposeFilter).
template <typename A, typename F>
class StringDetComposeStateTable : public
VectorStateTable<ComposeStateTuple<typename A::StateId, F>,
ComposeState1Fingerprint<typename A::StateId, F> > {
public:
typedef A Arc;
typedef typename A::StateId StateId;
typedef F FilterState;
typedef ComposeStateTuple<StateId, F> StateTuple;
typedef VectorStateTable<StateTuple,
ComposeState1Fingerprint<StateId, F> > StateTable;
StringDetComposeStateTable(const Fst<A> &fst1, const Fst<A> &fst2)
: error_(false) {
uint64 props1 = kString;
uint64 props2 = kIDeterministic | kNoIEpsilons;
if (fst1.Properties(props1, true) != props1 ||
fst2.Properties(props2, true) != props2) {
FSTERROR() << "StringDetComposeStateTable: fst1 not a string or"
<< " fst2 not input deterministic and epsilon-free";
error_ = true;
}
}
StringDetComposeStateTable(const StringDetComposeStateTable<A, F> &table)
: StateTable(table), error_(table.error_) {}
bool Error() const { return error_; }
private:
bool error_;
void operator=(const StringDetComposeStateTable<A, F> &table); // disallow
};
// A VectorStateTable over composition tuples. This can be used when
// FST2 is a string (satisfies kStringProperties) and FST1 is
// epsilon-free and deterministic. It should be used with a
// composition filter that creates at most one filter state per tuple
// under these conditions (e.g. SequenceComposeFilter or
// MatchComposeFilter).
template <typename A, typename F>
class DetStringComposeStateTable : public
VectorStateTable<ComposeStateTuple<typename A::StateId, F>,
ComposeState2Fingerprint<typename A::StateId, F> > {
public:
typedef A Arc;
typedef typename A::StateId StateId;
typedef F FilterState;
typedef ComposeStateTuple<StateId, F> StateTuple;
typedef VectorStateTable<StateTuple,
ComposeState2Fingerprint<StateId, F> > StateTable;
DetStringComposeStateTable(const Fst<A> &fst1, const Fst<A> &fst2)
:error_(false) {
uint64 props1 = kODeterministic | kNoOEpsilons;
uint64 props2 = kString;
if (fst1.Properties(props1, true) != props1 ||
fst2.Properties(props2, true) != props2) {
FSTERROR() << "StringDetComposeStateTable: fst2 not a string or"
<< " fst1 not output deterministic and epsilon-free";
error_ = true;
}
}
DetStringComposeStateTable(const DetStringComposeStateTable<A, F> &table)
: StateTable(table), error_(table.error_) {}
bool Error() const { return error_; }
private:
bool error_;
void operator=(const DetStringComposeStateTable<A, F> &table); // disallow
};
// An ErasableStateTable over composition tuples. The Erase(StateId) method
// can be called if the user either is sure that composition will never return
// to that tuple or doesn't care that if it does, it is assigned a new
// state ID.
template <typename A, typename F>
class ErasableComposeStateTable : public
ErasableStateTable<ComposeStateTuple<typename A::StateId, F>,
ComposeHash<typename A::StateId, F> > {
public:
typedef A Arc;
typedef typename A::StateId StateId;
typedef F FilterState;
typedef ComposeStateTuple<StateId, F> StateTuple;
ErasableComposeStateTable(const Fst<A> &fst1, const Fst<A> &fst2) {}
bool Error() const { return false; }
private:
void operator=(const ErasableComposeStateTable<A, F> &table); // disallow
};
} // namespace fst
#endif // FST_LIB_STATE_TABLE_H__
|