1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
// sparse-power-weight.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Kasturi Rangan Raghavan)
// Inspiration: [email protected] (Cyril Allauzen)
//
// \file
// Cartesian power weight semiring operation definitions.
// Uses SparseTupleWeight as underlying representation.
#ifndef FST_LIB_SPARSE_POWER_WEIGHT_H__
#define FST_LIB_SPARSE_POWER_WEIGHT_H__
#include<string>
#include <fst/sparse-tuple-weight.h>
#include <fst/weight.h>
namespace fst {
// Below SparseTupleWeight*Mapper are used in conjunction with
// SparseTupleWeightMap to compute the respective semiring operations
template<class W, class K>
struct SparseTupleWeightPlusMapper {
W Map(const K& k, const W& v1, const W& v2) const {
return Plus(v1, v2);
}
};
template<class W, class K>
struct SparseTupleWeightTimesMapper {
W Map(const K& k, const W& v1, const W& v2) const {
return Times(v1, v2);
}
};
template<class W, class K>
struct SparseTupleWeightDivideMapper {
SparseTupleWeightDivideMapper(DivideType divide_type) {
divide_type_ = divide_type;
}
W Map(const K& k, const W& v1, const W& v2) const {
return Divide(v1, v2, divide_type_);
}
DivideType divide_type_;
};
template<class W, class K>
struct SparseTupleWeightApproxMapper {
SparseTupleWeightApproxMapper(float delta) { delta_ = delta; }
W Map(const K& k, const W& v1, const W& v2) const {
return ApproxEqual(v1, v2, delta_) ? W::One() : W::Zero();
}
float delta_;
};
// Sparse cartesian power semiring: W ^ n
// Forms:
// - a left semimodule when W is a left semiring,
// - a right semimodule when W is a right semiring,
// - a bisemimodule when W is a semiring,
// the free semimodule of rank n over W
// The Times operation is overloaded to provide the
// left and right scalar products.
// K is the key value type. kNoKey(-1) is reserved for internal use
template <class W, class K = int>
class SparsePowerWeight : public SparseTupleWeight<W, K> {
public:
using SparseTupleWeight<W, K>::Zero;
using SparseTupleWeight<W, K>::One;
using SparseTupleWeight<W, K>::NoWeight;
using SparseTupleWeight<W, K>::Quantize;
using SparseTupleWeight<W, K>::Reverse;
typedef SparsePowerWeight<typename W::ReverseWeight, K> ReverseWeight;
SparsePowerWeight() {}
SparsePowerWeight(const SparseTupleWeight<W, K> &w) :
SparseTupleWeight<W, K>(w) { }
template <class Iterator>
SparsePowerWeight(Iterator begin, Iterator end) :
SparseTupleWeight<W, K>(begin, end) { }
SparsePowerWeight(const K &key, const W &w) :
SparseTupleWeight<W, K>(key, w) { }
static const SparsePowerWeight<W, K> &Zero() {
static const SparsePowerWeight<W, K> zero(SparseTupleWeight<W, K>::Zero());
return zero;
}
static const SparsePowerWeight<W, K> &One() {
static const SparsePowerWeight<W, K> one(SparseTupleWeight<W, K>::One());
return one;
}
static const SparsePowerWeight<W, K> &NoWeight() {
static const SparsePowerWeight<W, K> no_weight(
SparseTupleWeight<W, K>::NoWeight());
return no_weight;
}
// Overide this: Overwrite the Type method to reflect the key type
// if using non-default key type.
static const string &Type() {
static string type;
if(type.empty()) {
type = W::Type() + "_^n";
if(sizeof(K) != sizeof(uint32)) {
string size;
Int64ToStr(8 * sizeof(K), &size);
type += "_" + size;
}
}
return type;
}
static uint64 Properties() {
uint64 props = W::Properties();
return props & (kLeftSemiring | kRightSemiring |
kCommutative | kIdempotent);
}
SparsePowerWeight<W, K> Quantize(float delta = kDelta) const {
return SparseTupleWeight<W, K>::Quantize(delta);
}
ReverseWeight Reverse() const {
return SparseTupleWeight<W, K>::Reverse();
}
};
// Semimodule plus operation
template <class W, class K>
inline SparsePowerWeight<W, K> Plus(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
SparsePowerWeight<W, K> ret;
SparseTupleWeightPlusMapper<W, K> operator_mapper;
SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
return ret;
}
// Semimodule times operation
template <class W, class K>
inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
SparsePowerWeight<W, K> ret;
SparseTupleWeightTimesMapper<W, K> operator_mapper;
SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
return ret;
}
// Semimodule divide operation
template <class W, class K>
inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2,
DivideType type = DIVIDE_ANY) {
SparsePowerWeight<W, K> ret;
SparseTupleWeightDivideMapper<W, K> operator_mapper(type);
SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
return ret;
}
// Semimodule dot product
template <class W, class K>
inline const W& DotProduct(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
const SparsePowerWeight<W, K>& product = Times(w1, w2);
W ret(W::Zero());
for (SparseTupleWeightIterator<W, K> it(product); !it.Done(); it.Next()) {
ret = Plus(ret, it.Value().second);
}
return ret;
}
template <class W, class K>
inline bool ApproxEqual(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2,
float delta = kDelta) {
SparseTupleWeight<W, K> ret;
SparseTupleWeightApproxMapper<W, K> operator_mapper(kDelta);
SparseTupleWeightMap(&ret, w1, w2, operator_mapper);
return ret == SparsePowerWeight<W, K>::One();
}
template <class W, class K>
inline SparsePowerWeight<W, K> Times(const W &k,
const SparsePowerWeight<W, K> &w2) {
SparsePowerWeight<W, K> w1(k);
return Times(w1, w2);
}
template <class W, class K>
inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
const W &k) {
SparsePowerWeight<W, K> w2(k);
return Times(w1, w2);
}
template <class W, class K>
inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
const W &k,
DivideType divide_type = DIVIDE_ANY) {
SparsePowerWeight<W, K> w2(k);
return Divide(w1, w2, divide_type);
}
} // namespace fst
#endif // FST_LIB_SPARSE_POWER_WEIGHT_H__
|