1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|
// rmepsilon.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Cyril Allauzen)
//
// \file
// Functions and classes that implemement epsilon-removal.
#ifndef FST_LIB_RMEPSILON_H__
#define FST_LIB_RMEPSILON_H__
#include <tr1/unordered_map>
using std::tr1::unordered_map;
using std::tr1::unordered_multimap;
#include <fst/slist.h>
#include <stack>
#include <string>
#include <utility>
using std::pair; using std::make_pair;
#include <vector>
using std::vector;
#include <fst/arcfilter.h>
#include <fst/cache.h>
#include <fst/connect.h>
#include <fst/factor-weight.h>
#include <fst/invert.h>
#include <fst/prune.h>
#include <fst/queue.h>
#include <fst/shortest-distance.h>
#include <fst/topsort.h>
namespace fst {
template <class Arc, class Queue>
class RmEpsilonOptions
: public ShortestDistanceOptions<Arc, Queue, EpsilonArcFilter<Arc> > {
public:
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
bool connect; // Connect output
Weight weight_threshold; // Pruning weight threshold.
StateId state_threshold; // Pruning state threshold.
explicit RmEpsilonOptions(Queue *q, float d = kDelta, bool c = true,
Weight w = Weight::Zero(),
StateId n = kNoStateId)
: ShortestDistanceOptions< Arc, Queue, EpsilonArcFilter<Arc> >(
q, EpsilonArcFilter<Arc>(), kNoStateId, d),
connect(c), weight_threshold(w), state_threshold(n) {}
private:
RmEpsilonOptions(); // disallow
};
// Computation state of the epsilon-removal algorithm.
template <class Arc, class Queue>
class RmEpsilonState {
public:
typedef typename Arc::Label Label;
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
RmEpsilonState(const Fst<Arc> &fst,
vector<Weight> *distance,
const RmEpsilonOptions<Arc, Queue> &opts)
: fst_(fst), distance_(distance), sd_state_(fst_, distance, opts, true),
expand_id_(0) {}
// Compute arcs and final weight for state 's'
void Expand(StateId s);
// Returns arcs of expanded state.
vector<Arc> &Arcs() { return arcs_; }
// Returns final weight of expanded state.
const Weight &Final() const { return final_; }
// Return true if an error has occured.
bool Error() const { return sd_state_.Error(); }
private:
static const size_t kPrime0 = 7853;
static const size_t kPrime1 = 7867;
struct Element {
Label ilabel;
Label olabel;
StateId nextstate;
Element() {}
Element(Label i, Label o, StateId s)
: ilabel(i), olabel(o), nextstate(s) {}
};
class ElementKey {
public:
size_t operator()(const Element& e) const {
return static_cast<size_t>(e.nextstate +
e.ilabel * kPrime0 +
e.olabel * kPrime1);
}
private:
};
class ElementEqual {
public:
bool operator()(const Element &e1, const Element &e2) const {
return (e1.ilabel == e2.ilabel) && (e1.olabel == e2.olabel)
&& (e1.nextstate == e2.nextstate);
}
};
typedef unordered_map<Element, pair<StateId, size_t>,
ElementKey, ElementEqual> ElementMap;
const Fst<Arc> &fst_;
// Distance from state being expanded in epsilon-closure.
vector<Weight> *distance_;
// Shortest distance algorithm computation state.
ShortestDistanceState<Arc, Queue, EpsilonArcFilter<Arc> > sd_state_;
// Maps an element 'e' to a pair 'p' corresponding to a position
// in the arcs vector of the state being expanded. 'e' corresponds
// to the position 'p.second' in the 'arcs_' vector if 'p.first' is
// equal to the state being expanded.
ElementMap element_map_;
EpsilonArcFilter<Arc> eps_filter_;
stack<StateId> eps_queue_; // Queue used to visit the epsilon-closure
vector<bool> visited_; // '[i] = true' if state 'i' has been visited
slist<StateId> visited_states_; // List of visited states
vector<Arc> arcs_; // Arcs of state being expanded
Weight final_; // Final weight of state being expanded
StateId expand_id_; // Unique ID for each call to Expand
DISALLOW_COPY_AND_ASSIGN(RmEpsilonState);
};
template <class Arc, class Queue>
const size_t RmEpsilonState<Arc, Queue>::kPrime0;
template <class Arc, class Queue>
const size_t RmEpsilonState<Arc, Queue>::kPrime1;
template <class Arc, class Queue>
void RmEpsilonState<Arc,Queue>::Expand(typename Arc::StateId source) {
final_ = Weight::Zero();
arcs_.clear();
sd_state_.ShortestDistance(source);
if (sd_state_.Error())
return;
eps_queue_.push(source);
while (!eps_queue_.empty()) {
StateId state = eps_queue_.top();
eps_queue_.pop();
while (visited_.size() <= state) visited_.push_back(false);
if (visited_[state]) continue;
visited_[state] = true;
visited_states_.push_front(state);
for (ArcIterator< Fst<Arc> > ait(fst_, state);
!ait.Done();
ait.Next()) {
Arc arc = ait.Value();
arc.weight = Times((*distance_)[state], arc.weight);
if (eps_filter_(arc)) {
while (visited_.size() <= arc.nextstate)
visited_.push_back(false);
if (!visited_[arc.nextstate])
eps_queue_.push(arc.nextstate);
} else {
Element element(arc.ilabel, arc.olabel, arc.nextstate);
typename ElementMap::iterator it = element_map_.find(element);
if (it == element_map_.end()) {
element_map_.insert(
pair<Element, pair<StateId, size_t> >
(element, pair<StateId, size_t>(expand_id_, arcs_.size())));
arcs_.push_back(arc);
} else {
if (((*it).second).first == expand_id_) {
Weight &w = arcs_[((*it).second).second].weight;
w = Plus(w, arc.weight);
} else {
((*it).second).first = expand_id_;
((*it).second).second = arcs_.size();
arcs_.push_back(arc);
}
}
}
}
final_ = Plus(final_, Times((*distance_)[state], fst_.Final(state)));
}
while (!visited_states_.empty()) {
visited_[visited_states_.front()] = false;
visited_states_.pop_front();
}
++expand_id_;
}
// Removes epsilon-transitions (when both the input and output label
// are an epsilon) from a transducer. The result will be an equivalent
// FST that has no such epsilon transitions. This version modifies
// its input. It allows fine control via the options argument; see
// below for a simpler interface.
//
// The vector 'distance' will be used to hold the shortest distances
// during the epsilon-closure computation. The state queue discipline
// and convergence delta are taken in the options argument.
template <class Arc, class Queue>
void RmEpsilon(MutableFst<Arc> *fst,
vector<typename Arc::Weight> *distance,
const RmEpsilonOptions<Arc, Queue> &opts) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
typedef typename Arc::Label Label;
if (fst->Start() == kNoStateId) {
return;
}
// 'noneps_in[s]' will be set to true iff 's' admits a non-epsilon
// incoming transition or is the start state.
vector<bool> noneps_in(fst->NumStates(), false);
noneps_in[fst->Start()] = true;
for (StateId i = 0; i < fst->NumStates(); ++i) {
for (ArcIterator<Fst<Arc> > aiter(*fst, i);
!aiter.Done();
aiter.Next()) {
if (aiter.Value().ilabel != 0 || aiter.Value().olabel != 0)
noneps_in[aiter.Value().nextstate] = true;
}
}
// States sorted in topological order when (acyclic) or generic
// topological order (cyclic).
vector<StateId> states;
states.reserve(fst->NumStates());
if (fst->Properties(kTopSorted, false) & kTopSorted) {
for (StateId i = 0; i < fst->NumStates(); i++)
states.push_back(i);
} else if (fst->Properties(kAcyclic, false) & kAcyclic) {
vector<StateId> order;
bool acyclic;
TopOrderVisitor<Arc> top_order_visitor(&order, &acyclic);
DfsVisit(*fst, &top_order_visitor, EpsilonArcFilter<Arc>());
// Sanity check: should be acyclic if property bit is set.
if(!acyclic) {
FSTERROR() << "RmEpsilon: inconsistent acyclic property bit";
fst->SetProperties(kError, kError);
return;
}
states.resize(order.size());
for (StateId i = 0; i < order.size(); i++)
states[order[i]] = i;
} else {
uint64 props;
vector<StateId> scc;
SccVisitor<Arc> scc_visitor(&scc, 0, 0, &props);
DfsVisit(*fst, &scc_visitor, EpsilonArcFilter<Arc>());
vector<StateId> first(scc.size(), kNoStateId);
vector<StateId> next(scc.size(), kNoStateId);
for (StateId i = 0; i < scc.size(); i++) {
if (first[scc[i]] != kNoStateId)
next[i] = first[scc[i]];
first[scc[i]] = i;
}
for (StateId i = 0; i < first.size(); i++)
for (StateId j = first[i]; j != kNoStateId; j = next[j])
states.push_back(j);
}
RmEpsilonState<Arc, Queue>
rmeps_state(*fst, distance, opts);
while (!states.empty()) {
StateId state = states.back();
states.pop_back();
if (!noneps_in[state])
continue;
rmeps_state.Expand(state);
fst->SetFinal(state, rmeps_state.Final());
fst->DeleteArcs(state);
vector<Arc> &arcs = rmeps_state.Arcs();
fst->ReserveArcs(state, arcs.size());
while (!arcs.empty()) {
fst->AddArc(state, arcs.back());
arcs.pop_back();
}
}
for (StateId s = 0; s < fst->NumStates(); ++s) {
if (!noneps_in[s])
fst->DeleteArcs(s);
}
if(rmeps_state.Error())
fst->SetProperties(kError, kError);
fst->SetProperties(
RmEpsilonProperties(fst->Properties(kFstProperties, false)),
kFstProperties);
if (opts.weight_threshold != Weight::Zero() ||
opts.state_threshold != kNoStateId)
Prune(fst, opts.weight_threshold, opts.state_threshold);
if (opts.connect && (opts.weight_threshold == Weight::Zero() ||
opts.state_threshold != kNoStateId))
Connect(fst);
}
// Removes epsilon-transitions (when both the input and output label
// are an epsilon) from a transducer. The result will be an equivalent
// FST that has no such epsilon transitions. This version modifies its
// input. It has a simplified interface; see above for a version that
// allows finer control.
//
// Complexity:
// - Time:
// - Unweighted: O(V2 + V E)
// - Acyclic: O(V2 + V E)
// - Tropical semiring: O(V2 log V + V E)
// - General: exponential
// - Space: O(V E)
// where V = # of states visited, E = # of arcs.
//
// References:
// - Mehryar Mohri. Generic Epsilon-Removal and Input
// Epsilon-Normalization Algorithms for Weighted Transducers,
// "International Journal of Computer Science", 13(1):129-143 (2002).
template <class Arc>
void RmEpsilon(MutableFst<Arc> *fst,
bool connect = true,
typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
typename Arc::StateId state_threshold = kNoStateId,
float delta = kDelta) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
typedef typename Arc::Label Label;
vector<Weight> distance;
AutoQueue<StateId> state_queue(*fst, &distance, EpsilonArcFilter<Arc>());
RmEpsilonOptions<Arc, AutoQueue<StateId> >
opts(&state_queue, delta, connect, weight_threshold, state_threshold);
RmEpsilon(fst, &distance, opts);
}
struct RmEpsilonFstOptions : CacheOptions {
float delta;
RmEpsilonFstOptions(const CacheOptions &opts, float delta = kDelta)
: CacheOptions(opts), delta(delta) {}
explicit RmEpsilonFstOptions(float delta = kDelta) : delta(delta) {}
};
// Implementation of delayed RmEpsilonFst.
template <class A>
class RmEpsilonFstImpl : public CacheImpl<A> {
public:
using FstImpl<A>::SetType;
using FstImpl<A>::SetProperties;
using FstImpl<A>::SetInputSymbols;
using FstImpl<A>::SetOutputSymbols;
using CacheBaseImpl< CacheState<A> >::PushArc;
using CacheBaseImpl< CacheState<A> >::HasArcs;
using CacheBaseImpl< CacheState<A> >::HasFinal;
using CacheBaseImpl< CacheState<A> >::HasStart;
using CacheBaseImpl< CacheState<A> >::SetArcs;
using CacheBaseImpl< CacheState<A> >::SetFinal;
using CacheBaseImpl< CacheState<A> >::SetStart;
typedef typename A::Label Label;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
typedef CacheState<A> State;
RmEpsilonFstImpl(const Fst<A>& fst, const RmEpsilonFstOptions &opts)
: CacheImpl<A>(opts),
fst_(fst.Copy()),
delta_(opts.delta),
rmeps_state_(
*fst_,
&distance_,
RmEpsilonOptions<A, FifoQueue<StateId> >(&queue_, delta_, false)) {
SetType("rmepsilon");
uint64 props = fst.Properties(kFstProperties, false);
SetProperties(RmEpsilonProperties(props, true), kCopyProperties);
SetInputSymbols(fst.InputSymbols());
SetOutputSymbols(fst.OutputSymbols());
}
RmEpsilonFstImpl(const RmEpsilonFstImpl &impl)
: CacheImpl<A>(impl),
fst_(impl.fst_->Copy(true)),
delta_(impl.delta_),
rmeps_state_(
*fst_,
&distance_,
RmEpsilonOptions<A, FifoQueue<StateId> >(&queue_, delta_, false)) {
SetType("rmepsilon");
SetProperties(impl.Properties(), kCopyProperties);
SetInputSymbols(impl.InputSymbols());
SetOutputSymbols(impl.OutputSymbols());
}
~RmEpsilonFstImpl() {
delete fst_;
}
StateId Start() {
if (!HasStart()) {
SetStart(fst_->Start());
}
return CacheImpl<A>::Start();
}
Weight Final(StateId s) {
if (!HasFinal(s)) {
Expand(s);
}
return CacheImpl<A>::Final(s);
}
size_t NumArcs(StateId s) {
if (!HasArcs(s))
Expand(s);
return CacheImpl<A>::NumArcs(s);
}
size_t NumInputEpsilons(StateId s) {
if (!HasArcs(s))
Expand(s);
return CacheImpl<A>::NumInputEpsilons(s);
}
size_t NumOutputEpsilons(StateId s) {
if (!HasArcs(s))
Expand(s);
return CacheImpl<A>::NumOutputEpsilons(s);
}
uint64 Properties() const { return Properties(kFstProperties); }
// Set error if found; return FST impl properties.
uint64 Properties(uint64 mask) const {
if ((mask & kError) &&
(fst_->Properties(kError, false) || rmeps_state_.Error()))
SetProperties(kError, kError);
return FstImpl<A>::Properties(mask);
}
void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
if (!HasArcs(s))
Expand(s);
CacheImpl<A>::InitArcIterator(s, data);
}
void Expand(StateId s) {
rmeps_state_.Expand(s);
SetFinal(s, rmeps_state_.Final());
vector<A> &arcs = rmeps_state_.Arcs();
while (!arcs.empty()) {
PushArc(s, arcs.back());
arcs.pop_back();
}
SetArcs(s);
}
private:
const Fst<A> *fst_;
float delta_;
vector<Weight> distance_;
FifoQueue<StateId> queue_;
RmEpsilonState<A, FifoQueue<StateId> > rmeps_state_;
void operator=(const RmEpsilonFstImpl<A> &); // disallow
};
// Removes epsilon-transitions (when both the input and output label
// are an epsilon) from a transducer. The result will be an equivalent
// FST that has no such epsilon transitions. This version is a
// delayed Fst.
//
// Complexity:
// - Time:
// - Unweighted: O(v^2 + v e)
// - General: exponential
// - Space: O(v e)
// where v = # of states visited, e = # of arcs visited. Constant time
// to visit an input state or arc is assumed and exclusive of caching.
//
// References:
// - Mehryar Mohri. Generic Epsilon-Removal and Input
// Epsilon-Normalization Algorithms for Weighted Transducers,
// "International Journal of Computer Science", 13(1):129-143 (2002).
//
// This class attaches interface to implementation and handles
// reference counting, delegating most methods to ImplToFst.
template <class A>
class RmEpsilonFst : public ImplToFst< RmEpsilonFstImpl<A> > {
public:
friend class ArcIterator< RmEpsilonFst<A> >;
friend class StateIterator< RmEpsilonFst<A> >;
typedef A Arc;
typedef typename A::StateId StateId;
typedef CacheState<A> State;
typedef RmEpsilonFstImpl<A> Impl;
RmEpsilonFst(const Fst<A> &fst)
: ImplToFst<Impl>(new Impl(fst, RmEpsilonFstOptions())) {}
RmEpsilonFst(const Fst<A> &fst, const RmEpsilonFstOptions &opts)
: ImplToFst<Impl>(new Impl(fst, opts)) {}
// See Fst<>::Copy() for doc.
RmEpsilonFst(const RmEpsilonFst<A> &fst, bool safe = false)
: ImplToFst<Impl>(fst, safe) {}
// Get a copy of this RmEpsilonFst. See Fst<>::Copy() for further doc.
virtual RmEpsilonFst<A> *Copy(bool safe = false) const {
return new RmEpsilonFst<A>(*this, safe);
}
virtual inline void InitStateIterator(StateIteratorData<A> *data) const;
virtual void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const {
GetImpl()->InitArcIterator(s, data);
}
private:
// Makes visible to friends.
Impl *GetImpl() const { return ImplToFst<Impl>::GetImpl(); }
void operator=(const RmEpsilonFst<A> &fst); // disallow
};
// Specialization for RmEpsilonFst.
template<class A>
class StateIterator< RmEpsilonFst<A> >
: public CacheStateIterator< RmEpsilonFst<A> > {
public:
explicit StateIterator(const RmEpsilonFst<A> &fst)
: CacheStateIterator< RmEpsilonFst<A> >(fst, fst.GetImpl()) {}
};
// Specialization for RmEpsilonFst.
template <class A>
class ArcIterator< RmEpsilonFst<A> >
: public CacheArcIterator< RmEpsilonFst<A> > {
public:
typedef typename A::StateId StateId;
ArcIterator(const RmEpsilonFst<A> &fst, StateId s)
: CacheArcIterator< RmEpsilonFst<A> >(fst.GetImpl(), s) {
if (!fst.GetImpl()->HasArcs(s))
fst.GetImpl()->Expand(s);
}
private:
DISALLOW_COPY_AND_ASSIGN(ArcIterator);
};
template <class A> inline
void RmEpsilonFst<A>::InitStateIterator(StateIteratorData<A> *data) const {
data->base = new StateIterator< RmEpsilonFst<A> >(*this);
}
// Useful alias when using StdArc.
typedef RmEpsilonFst<StdArc> StdRmEpsilonFst;
} // namespace fst
#endif // FST_LIB_RMEPSILON_H__
|