1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
// power-weight.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Cyril Allauzen)
//
// \file
// Cartesian power weight semiring operation definitions.
#ifndef FST_LIB_POWER_WEIGHT_H__
#define FST_LIB_POWER_WEIGHT_H__
#include <fst/tuple-weight.h>
#include <fst/weight.h>
namespace fst {
// Cartesian power semiring: W ^ n
// Forms:
// - a left semimodule when W is a left semiring,
// - a right semimodule when W is a right semiring,
// - a bisemimodule when W is a semiring,
// the free semimodule of rank n over W
// The Times operation is overloaded to provide the
// left and right scalar products.
template <class W, unsigned int n>
class PowerWeight : public TupleWeight<W, n> {
public:
using TupleWeight<W, n>::Zero;
using TupleWeight<W, n>::One;
using TupleWeight<W, n>::NoWeight;
using TupleWeight<W, n>::Quantize;
using TupleWeight<W, n>::Reverse;
typedef PowerWeight<typename W::ReverseWeight, n> ReverseWeight;
PowerWeight() {}
PowerWeight(const TupleWeight<W, n> &w) : TupleWeight<W, n>(w) {}
template <class Iterator>
PowerWeight(Iterator begin, Iterator end) : TupleWeight<W, n>(begin, end) {}
static const PowerWeight<W, n> &Zero() {
static const PowerWeight<W, n> zero(TupleWeight<W, n>::Zero());
return zero;
}
static const PowerWeight<W, n> &One() {
static const PowerWeight<W, n> one(TupleWeight<W, n>::One());
return one;
}
static const PowerWeight<W, n> &NoWeight() {
static const PowerWeight<W, n> no_weight(TupleWeight<W, n>::NoWeight());
return no_weight;
}
static const string &Type() {
static string type;
if (type.empty()) {
string power;
Int64ToStr(n, &power);
type = W::Type() + "_^" + power;
}
return type;
}
static uint64 Properties() {
uint64 props = W::Properties();
return props & (kLeftSemiring | kRightSemiring |
kCommutative | kIdempotent);
}
PowerWeight<W, n> Quantize(float delta = kDelta) const {
return TupleWeight<W, n>::Quantize(delta);
}
ReverseWeight Reverse() const {
return TupleWeight<W, n>::Reverse();
}
};
// Semiring plus operation
template <class W, unsigned int n>
inline PowerWeight<W, n> Plus(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2) {
PowerWeight<W, n> w;
for (size_t i = 0; i < n; ++i)
w.SetValue(i, Plus(w1.Value(i), w2.Value(i)));
return w;
}
// Semiring times operation
template <class W, unsigned int n>
inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2) {
PowerWeight<W, n> w;
for (size_t i = 0; i < n; ++i)
w.SetValue(i, Times(w1.Value(i), w2.Value(i)));
return w;
}
// Semiring divide operation
template <class W, unsigned int n>
inline PowerWeight<W, n> Divide(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2,
DivideType type = DIVIDE_ANY) {
PowerWeight<W, n> w;
for (size_t i = 0; i < n; ++i)
w.SetValue(i, Divide(w1.Value(i), w2.Value(i), type));
return w;
}
// Semimodule left scalar product
template <class W, unsigned int n>
inline PowerWeight<W, n> Times(const W &s, const PowerWeight<W, n> &w) {
PowerWeight<W, n> sw;
for (size_t i = 0; i < n; ++i)
sw.SetValue(i, Times(s, w.Value(i)));
return w;
}
// Semimodule right scalar product
template <class W, unsigned int n>
inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w, const W &s) {
PowerWeight<W, n> ws;
for (size_t i = 0; i < n; ++i)
ws.SetValue(i, Times(w.Value(i), s));
return w;
}
// Semimodule dot product
template <class W, unsigned int n>
inline W DotProduct(const PowerWeight<W, n> &w1,
const PowerWeight<W, n> &w2) {
W w = W::Zero();
for (size_t i = 0; i < n; ++i)
w = Plus(w, Times(w1.Value(i), w2.Value(i)));
return w;
}
} // namespace fst
#endif // FST_LIB_POWER_WEIGHT_H__
|