1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
// float-weight.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Michael Riley)
//
// \file
// Float weight set and associated semiring operation definitions.
//
#ifndef FST_LIB_FLOAT_WEIGHT_H__
#define FST_LIB_FLOAT_WEIGHT_H__
#include <limits>
#include <climits>
#include <sstream>
#include <string>
#include <fst/util.h>
#include <fst/weight.h>
namespace fst {
// numeric limits class
template <class T>
class FloatLimits {
public:
static const T PosInfinity() {
static const T pos_infinity = numeric_limits<T>::infinity();
return pos_infinity;
}
static const T NegInfinity() {
static const T neg_infinity = -PosInfinity();
return neg_infinity;
}
static const T NumberBad() {
static const T number_bad = numeric_limits<T>::quiet_NaN();
return number_bad;
}
};
// weight class to be templated on floating-points types
template <class T = float>
class FloatWeightTpl {
public:
FloatWeightTpl() {}
FloatWeightTpl(T f) : value_(f) {}
FloatWeightTpl(const FloatWeightTpl<T> &w) : value_(w.value_) {}
FloatWeightTpl<T> &operator=(const FloatWeightTpl<T> &w) {
value_ = w.value_;
return *this;
}
istream &Read(istream &strm) {
return ReadType(strm, &value_);
}
ostream &Write(ostream &strm) const {
return WriteType(strm, value_);
}
size_t Hash() const {
union {
T f;
size_t s;
} u;
u.s = 0;
u.f = value_;
return u.s;
}
const T &Value() const { return value_; }
protected:
void SetValue(const T &f) { value_ = f; }
inline static string GetPrecisionString() {
int64 size = sizeof(T);
if (size == sizeof(float)) return "";
size *= CHAR_BIT;
string result;
Int64ToStr(size, &result);
return result;
}
private:
T value_;
};
// Single-precision float weight
typedef FloatWeightTpl<float> FloatWeight;
template <class T>
inline bool operator==(const FloatWeightTpl<T> &w1,
const FloatWeightTpl<T> &w2) {
// Volatile qualifier thwarts over-aggressive compiler optimizations
// that lead to problems esp. with NaturalLess().
volatile T v1 = w1.Value();
volatile T v2 = w2.Value();
return v1 == v2;
}
inline bool operator==(const FloatWeightTpl<double> &w1,
const FloatWeightTpl<double> &w2) {
return operator==<double>(w1, w2);
}
inline bool operator==(const FloatWeightTpl<float> &w1,
const FloatWeightTpl<float> &w2) {
return operator==<float>(w1, w2);
}
template <class T>
inline bool operator!=(const FloatWeightTpl<T> &w1,
const FloatWeightTpl<T> &w2) {
return !(w1 == w2);
}
inline bool operator!=(const FloatWeightTpl<double> &w1,
const FloatWeightTpl<double> &w2) {
return operator!=<double>(w1, w2);
}
inline bool operator!=(const FloatWeightTpl<float> &w1,
const FloatWeightTpl<float> &w2) {
return operator!=<float>(w1, w2);
}
template <class T>
inline bool ApproxEqual(const FloatWeightTpl<T> &w1,
const FloatWeightTpl<T> &w2,
float delta = kDelta) {
return w1.Value() <= w2.Value() + delta && w2.Value() <= w1.Value() + delta;
}
template <class T>
inline ostream &operator<<(ostream &strm, const FloatWeightTpl<T> &w) {
if (w.Value() == FloatLimits<T>::PosInfinity())
return strm << "Infinity";
else if (w.Value() == FloatLimits<T>::NegInfinity())
return strm << "-Infinity";
else if (w.Value() != w.Value()) // Fails for NaN
return strm << "BadNumber";
else
return strm << w.Value();
}
template <class T>
inline istream &operator>>(istream &strm, FloatWeightTpl<T> &w) {
string s;
strm >> s;
if (s == "Infinity") {
w = FloatWeightTpl<T>(FloatLimits<T>::PosInfinity());
} else if (s == "-Infinity") {
w = FloatWeightTpl<T>(FloatLimits<T>::NegInfinity());
} else {
char *p;
T f = strtod(s.c_str(), &p);
if (p < s.c_str() + s.size())
strm.clear(std::ios::badbit);
else
w = FloatWeightTpl<T>(f);
}
return strm;
}
// Tropical semiring: (min, +, inf, 0)
template <class T>
class TropicalWeightTpl : public FloatWeightTpl<T> {
public:
using FloatWeightTpl<T>::Value;
typedef TropicalWeightTpl<T> ReverseWeight;
TropicalWeightTpl() : FloatWeightTpl<T>() {}
TropicalWeightTpl(T f) : FloatWeightTpl<T>(f) {}
TropicalWeightTpl(const TropicalWeightTpl<T> &w) : FloatWeightTpl<T>(w) {}
static const TropicalWeightTpl<T> Zero() {
return TropicalWeightTpl<T>(FloatLimits<T>::PosInfinity()); }
static const TropicalWeightTpl<T> One() {
return TropicalWeightTpl<T>(0.0F); }
static const TropicalWeightTpl<T> NoWeight() {
return TropicalWeightTpl<T>(FloatLimits<T>::NumberBad()); }
static const string &Type() {
static const string type = "tropical" +
FloatWeightTpl<T>::GetPrecisionString();
return type;
}
bool Member() const {
// First part fails for IEEE NaN
return Value() == Value() && Value() != FloatLimits<T>::NegInfinity();
}
TropicalWeightTpl<T> Quantize(float delta = kDelta) const {
if (Value() == FloatLimits<T>::NegInfinity() ||
Value() == FloatLimits<T>::PosInfinity() ||
Value() != Value())
return *this;
else
return TropicalWeightTpl<T>(floor(Value()/delta + 0.5F) * delta);
}
TropicalWeightTpl<T> Reverse() const { return *this; }
static uint64 Properties() {
return kLeftSemiring | kRightSemiring | kCommutative |
kPath | kIdempotent;
}
};
// Single precision tropical weight
typedef TropicalWeightTpl<float> TropicalWeight;
template <class T>
inline TropicalWeightTpl<T> Plus(const TropicalWeightTpl<T> &w1,
const TropicalWeightTpl<T> &w2) {
if (!w1.Member() || !w2.Member())
return TropicalWeightTpl<T>::NoWeight();
return w1.Value() < w2.Value() ? w1 : w2;
}
inline TropicalWeightTpl<float> Plus(const TropicalWeightTpl<float> &w1,
const TropicalWeightTpl<float> &w2) {
return Plus<float>(w1, w2);
}
inline TropicalWeightTpl<double> Plus(const TropicalWeightTpl<double> &w1,
const TropicalWeightTpl<double> &w2) {
return Plus<double>(w1, w2);
}
template <class T>
inline TropicalWeightTpl<T> Times(const TropicalWeightTpl<T> &w1,
const TropicalWeightTpl<T> &w2) {
if (!w1.Member() || !w2.Member())
return TropicalWeightTpl<T>::NoWeight();
T f1 = w1.Value(), f2 = w2.Value();
if (f1 == FloatLimits<T>::PosInfinity())
return w1;
else if (f2 == FloatLimits<T>::PosInfinity())
return w2;
else
return TropicalWeightTpl<T>(f1 + f2);
}
inline TropicalWeightTpl<float> Times(const TropicalWeightTpl<float> &w1,
const TropicalWeightTpl<float> &w2) {
return Times<float>(w1, w2);
}
inline TropicalWeightTpl<double> Times(const TropicalWeightTpl<double> &w1,
const TropicalWeightTpl<double> &w2) {
return Times<double>(w1, w2);
}
template <class T>
inline TropicalWeightTpl<T> Divide(const TropicalWeightTpl<T> &w1,
const TropicalWeightTpl<T> &w2,
DivideType typ = DIVIDE_ANY) {
if (!w1.Member() || !w2.Member())
return TropicalWeightTpl<T>::NoWeight();
T f1 = w1.Value(), f2 = w2.Value();
if (f2 == FloatLimits<T>::PosInfinity())
return FloatLimits<T>::NumberBad();
else if (f1 == FloatLimits<T>::PosInfinity())
return FloatLimits<T>::PosInfinity();
else
return TropicalWeightTpl<T>(f1 - f2);
}
inline TropicalWeightTpl<float> Divide(const TropicalWeightTpl<float> &w1,
const TropicalWeightTpl<float> &w2,
DivideType typ = DIVIDE_ANY) {
return Divide<float>(w1, w2, typ);
}
inline TropicalWeightTpl<double> Divide(const TropicalWeightTpl<double> &w1,
const TropicalWeightTpl<double> &w2,
DivideType typ = DIVIDE_ANY) {
return Divide<double>(w1, w2, typ);
}
// Log semiring: (log(e^-x + e^y), +, inf, 0)
template <class T>
class LogWeightTpl : public FloatWeightTpl<T> {
public:
using FloatWeightTpl<T>::Value;
typedef LogWeightTpl ReverseWeight;
LogWeightTpl() : FloatWeightTpl<T>() {}
LogWeightTpl(T f) : FloatWeightTpl<T>(f) {}
LogWeightTpl(const LogWeightTpl<T> &w) : FloatWeightTpl<T>(w) {}
static const LogWeightTpl<T> Zero() {
return LogWeightTpl<T>(FloatLimits<T>::PosInfinity());
}
static const LogWeightTpl<T> One() {
return LogWeightTpl<T>(0.0F);
}
static const LogWeightTpl<T> NoWeight() {
return LogWeightTpl<T>(FloatLimits<T>::NumberBad()); }
static const string &Type() {
static const string type = "log" + FloatWeightTpl<T>::GetPrecisionString();
return type;
}
bool Member() const {
// First part fails for IEEE NaN
return Value() == Value() && Value() != FloatLimits<T>::NegInfinity();
}
LogWeightTpl<T> Quantize(float delta = kDelta) const {
if (Value() == FloatLimits<T>::NegInfinity() ||
Value() == FloatLimits<T>::PosInfinity() ||
Value() != Value())
return *this;
else
return LogWeightTpl<T>(floor(Value()/delta + 0.5F) * delta);
}
LogWeightTpl<T> Reverse() const { return *this; }
static uint64 Properties() {
return kLeftSemiring | kRightSemiring | kCommutative;
}
};
// Single-precision log weight
typedef LogWeightTpl<float> LogWeight;
// Double-precision log weight
typedef LogWeightTpl<double> Log64Weight;
template <class T>
inline T LogExp(T x) { return log(1.0F + exp(-x)); }
template <class T>
inline LogWeightTpl<T> Plus(const LogWeightTpl<T> &w1,
const LogWeightTpl<T> &w2) {
T f1 = w1.Value(), f2 = w2.Value();
if (f1 == FloatLimits<T>::PosInfinity())
return w2;
else if (f2 == FloatLimits<T>::PosInfinity())
return w1;
else if (f1 > f2)
return LogWeightTpl<T>(f2 - LogExp(f1 - f2));
else
return LogWeightTpl<T>(f1 - LogExp(f2 - f1));
}
inline LogWeightTpl<float> Plus(const LogWeightTpl<float> &w1,
const LogWeightTpl<float> &w2) {
return Plus<float>(w1, w2);
}
inline LogWeightTpl<double> Plus(const LogWeightTpl<double> &w1,
const LogWeightTpl<double> &w2) {
return Plus<double>(w1, w2);
}
template <class T>
inline LogWeightTpl<T> Times(const LogWeightTpl<T> &w1,
const LogWeightTpl<T> &w2) {
if (!w1.Member() || !w2.Member())
return LogWeightTpl<T>::NoWeight();
T f1 = w1.Value(), f2 = w2.Value();
if (f1 == FloatLimits<T>::PosInfinity())
return w1;
else if (f2 == FloatLimits<T>::PosInfinity())
return w2;
else
return LogWeightTpl<T>(f1 + f2);
}
inline LogWeightTpl<float> Times(const LogWeightTpl<float> &w1,
const LogWeightTpl<float> &w2) {
return Times<float>(w1, w2);
}
inline LogWeightTpl<double> Times(const LogWeightTpl<double> &w1,
const LogWeightTpl<double> &w2) {
return Times<double>(w1, w2);
}
template <class T>
inline LogWeightTpl<T> Divide(const LogWeightTpl<T> &w1,
const LogWeightTpl<T> &w2,
DivideType typ = DIVIDE_ANY) {
if (!w1.Member() || !w2.Member())
return LogWeightTpl<T>::NoWeight();
T f1 = w1.Value(), f2 = w2.Value();
if (f2 == FloatLimits<T>::PosInfinity())
return FloatLimits<T>::NumberBad();
else if (f1 == FloatLimits<T>::PosInfinity())
return FloatLimits<T>::PosInfinity();
else
return LogWeightTpl<T>(f1 - f2);
}
inline LogWeightTpl<float> Divide(const LogWeightTpl<float> &w1,
const LogWeightTpl<float> &w2,
DivideType typ = DIVIDE_ANY) {
return Divide<float>(w1, w2, typ);
}
inline LogWeightTpl<double> Divide(const LogWeightTpl<double> &w1,
const LogWeightTpl<double> &w2,
DivideType typ = DIVIDE_ANY) {
return Divide<double>(w1, w2, typ);
}
// MinMax semiring: (min, max, inf, -inf)
template <class T>
class MinMaxWeightTpl : public FloatWeightTpl<T> {
public:
using FloatWeightTpl<T>::Value;
typedef MinMaxWeightTpl<T> ReverseWeight;
MinMaxWeightTpl() : FloatWeightTpl<T>() {}
MinMaxWeightTpl(T f) : FloatWeightTpl<T>(f) {}
MinMaxWeightTpl(const MinMaxWeightTpl<T> &w) : FloatWeightTpl<T>(w) {}
static const MinMaxWeightTpl<T> Zero() {
return MinMaxWeightTpl<T>(FloatLimits<T>::PosInfinity());
}
static const MinMaxWeightTpl<T> One() {
return MinMaxWeightTpl<T>(FloatLimits<T>::NegInfinity());
}
static const MinMaxWeightTpl<T> NoWeight() {
return MinMaxWeightTpl<T>(FloatLimits<T>::NumberBad()); }
static const string &Type() {
static const string type = "minmax" +
FloatWeightTpl<T>::GetPrecisionString();
return type;
}
bool Member() const {
// Fails for IEEE NaN
return Value() == Value();
}
MinMaxWeightTpl<T> Quantize(float delta = kDelta) const {
// If one of infinities, or a NaN
if (Value() == FloatLimits<T>::NegInfinity() ||
Value() == FloatLimits<T>::PosInfinity() ||
Value() != Value())
return *this;
else
return MinMaxWeightTpl<T>(floor(Value()/delta + 0.5F) * delta);
}
MinMaxWeightTpl<T> Reverse() const { return *this; }
static uint64 Properties() {
return kLeftSemiring | kRightSemiring | kCommutative | kIdempotent | kPath;
}
};
// Single-precision min-max weight
typedef MinMaxWeightTpl<float> MinMaxWeight;
// Min
template <class T>
inline MinMaxWeightTpl<T> Plus(
const MinMaxWeightTpl<T> &w1, const MinMaxWeightTpl<T> &w2) {
if (!w1.Member() || !w2.Member())
return MinMaxWeightTpl<T>::NoWeight();
return w1.Value() < w2.Value() ? w1 : w2;
}
inline MinMaxWeightTpl<float> Plus(
const MinMaxWeightTpl<float> &w1, const MinMaxWeightTpl<float> &w2) {
return Plus<float>(w1, w2);
}
inline MinMaxWeightTpl<double> Plus(
const MinMaxWeightTpl<double> &w1, const MinMaxWeightTpl<double> &w2) {
return Plus<double>(w1, w2);
}
// Max
template <class T>
inline MinMaxWeightTpl<T> Times(
const MinMaxWeightTpl<T> &w1, const MinMaxWeightTpl<T> &w2) {
if (!w1.Member() || !w2.Member())
return MinMaxWeightTpl<T>::NoWeight();
return w1.Value() >= w2.Value() ? w1 : w2;
}
inline MinMaxWeightTpl<float> Times(
const MinMaxWeightTpl<float> &w1, const MinMaxWeightTpl<float> &w2) {
return Times<float>(w1, w2);
}
inline MinMaxWeightTpl<double> Times(
const MinMaxWeightTpl<double> &w1, const MinMaxWeightTpl<double> &w2) {
return Times<double>(w1, w2);
}
// Defined only for special cases
template <class T>
inline MinMaxWeightTpl<T> Divide(const MinMaxWeightTpl<T> &w1,
const MinMaxWeightTpl<T> &w2,
DivideType typ = DIVIDE_ANY) {
if (!w1.Member() || !w2.Member())
return MinMaxWeightTpl<T>::NoWeight();
// min(w1, x) = w2, w1 >= w2 => min(w1, x) = w2, x = w2
return w1.Value() >= w2.Value() ? w1 : FloatLimits<T>::NumberBad();
}
inline MinMaxWeightTpl<float> Divide(const MinMaxWeightTpl<float> &w1,
const MinMaxWeightTpl<float> &w2,
DivideType typ = DIVIDE_ANY) {
return Divide<float>(w1, w2, typ);
}
inline MinMaxWeightTpl<double> Divide(const MinMaxWeightTpl<double> &w1,
const MinMaxWeightTpl<double> &w2,
DivideType typ = DIVIDE_ANY) {
return Divide<double>(w1, w2, typ);
}
//
// WEIGHT CONVERTER SPECIALIZATIONS.
//
// Convert to tropical
template <>
struct WeightConvert<LogWeight, TropicalWeight> {
TropicalWeight operator()(LogWeight w) const { return w.Value(); }
};
template <>
struct WeightConvert<Log64Weight, TropicalWeight> {
TropicalWeight operator()(Log64Weight w) const { return w.Value(); }
};
// Convert to log
template <>
struct WeightConvert<TropicalWeight, LogWeight> {
LogWeight operator()(TropicalWeight w) const { return w.Value(); }
};
template <>
struct WeightConvert<Log64Weight, LogWeight> {
LogWeight operator()(Log64Weight w) const { return w.Value(); }
};
// Convert to log64
template <>
struct WeightConvert<TropicalWeight, Log64Weight> {
Log64Weight operator()(TropicalWeight w) const { return w.Value(); }
};
template <>
struct WeightConvert<LogWeight, Log64Weight> {
Log64Weight operator()(LogWeight w) const { return w.Value(); }
};
} // namespace fst
#endif // FST_LIB_FLOAT_WEIGHT_H__
|