1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
// util/edit-distance-inl.h
// Copyright 2009-2011 Microsoft Corporation; Haihua Xu; Yanmin Qian
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_UTIL_EDIT_DISTANCE_INL_H_
#define KALDI_UTIL_EDIT_DISTANCE_INL_H_
#include "util/stl-utils.h"
namespace kaldi {
template<class T>
int32 LevenshteinEditDistance(const std::vector<T> &a,
const std::vector<T> &b) {
// Algorithm:
// write A and B for the sequences, with elements a_0 ..
// let |A| = M and |B| = N be the lengths, and have
// elements a_0 ... a_{M-1} and b_0 ... b_{N-1}.
// We are computing the recursion
// E(m, n) = min( E(m-1, n-1) + (1-delta(a_{m-1}, b_{n-1})),
// E(m-1, n),
// E(m, n-1) ).
// where E(m, n) is defined for m = 0..M and n = 0..N and out-of-
// bounds quantities are considered to be infinity (i.e. the
// recursion does not visit them).
// We do this computation using a vector e of size N+1.
// The outer iterations range over m = 0..M.
int M = a.size(), N = b.size();
std::vector<int32> e(N+1);
std::vector<int32> e_tmp(N+1);
// initialize e.
for (size_t i = 0; i < e.size(); i++)
e[i] = i;
for (int32 m = 1; m <= M; m++) {
// computing E(m, .) from E(m-1, .)
// handle special case n = 0:
e_tmp[0] = e[0] + 1;
for (int32 n = 1; n <= N; n++) {
int32 term1 = e[n-1] + (a[m-1] == b[n-1] ? 0 : 1);
int32 term2 = e[n] + 1;
int32 term3 = e_tmp[n-1] + 1;
e_tmp[n] = std::min(term1, std::min(term2, term3));
}
e = e_tmp;
}
return e.back();
}
//
struct error_stats{
int32 ins_num;
int32 del_num;
int32 sub_num;
int32 total_cost; // minimum total cost to the current alignment.
};
// Note that both hyp and ref should not contain noise word in
// the following implementation.
template<class T>
int32 LevenshteinEditDistance(const std::vector<T> &ref,
const std::vector<T> &hyp,
int32 *ins, int32 *del, int32 *sub) {
// temp sequence to remember error type and stats.
std::vector<error_stats> e(ref.size()+1);
std::vector<error_stats> cur_e(ref.size()+1);
// initialize the first hypothesis aligned to the reference at each
// position:[hyp_index =0][ref_index]
for (size_t i =0; i < e.size(); i ++) {
e[i].ins_num = 0;
e[i].sub_num = 0;
e[i].del_num = i;
e[i].total_cost = i;
}
// for other alignments
for (size_t hyp_index = 1; hyp_index <= hyp.size(); hyp_index ++) {
cur_e[0] = e[0];
cur_e[0].ins_num ++;
cur_e[0].total_cost ++;
for (size_t ref_index = 1; ref_index <= ref.size(); ref_index ++) {
int32 ins_err = e[ref_index].total_cost + 1;
int32 del_err = cur_e[ref_index-1].total_cost + 1;
int32 sub_err = e[ref_index-1].total_cost;
if (hyp[hyp_index-1] != ref[ref_index-1])
sub_err ++;
if (sub_err < ins_err && sub_err < del_err) {
cur_e[ref_index] =e[ref_index-1];
if (hyp[hyp_index-1] != ref[ref_index-1])
cur_e[ref_index].sub_num ++; // substitution error should be increased
cur_e[ref_index].total_cost = sub_err;
}else if (del_err < ins_err ) {
cur_e[ref_index] = cur_e[ref_index-1];
cur_e[ref_index].total_cost = del_err;
cur_e[ref_index].del_num ++; // deletion number is increased.
}else{
cur_e[ref_index] = e[ref_index];
cur_e[ref_index].total_cost = ins_err;
cur_e[ref_index].ins_num ++; // insertion number is increased.
}
}
e = cur_e; // alternate for the next recursion.
}
size_t ref_index = e.size()-1;
*ins = e[ref_index].ins_num, *del = e[ref_index].del_num, *sub = e[ref_index].sub_num;
return e[ref_index].total_cost;
}
template<class T>
int32 LevenshteinAlignment(const std::vector<T> &a,
const std::vector<T> &b,
T eps_symbol,
std::vector<std::pair<T, T> > *output) {
// Check inputs:
{
KALDI_ASSERT(output != NULL);
for (size_t i = 0; i < a.size(); i++) KALDI_ASSERT(a[i] != eps_symbol);
for (size_t i = 0; i < b.size(); i++) KALDI_ASSERT(b[i] != eps_symbol);
}
output->clear();
// This is very memory-inefficiently implemented using a vector of vectors.
size_t M = a.size(), N = b.size();
size_t m, n;
std::vector<std::vector<int32> > e(M+1);
for (m = 0; m <=M; m++) e[m].resize(N+1);
for (n = 0; n <= N; n++)
e[0][n] = n;
for (m = 1; m <= M; m++) {
e[m][0] = e[m-1][0] + 1;
for (n = 1; n <= N; n++) {
int32 sub_or_ok = e[m-1][n-1] + (a[m-1] == b[n-1] ? 0 : 1);
int32 del = e[m-1][n] + 1; // assumes a == ref, b == hyp.
int32 ins = e[m][n-1] + 1;
e[m][n] = std::min(sub_or_ok, std::min(del, ins));
}
}
// get time-reversed output first: trace back.
m = M; n = N;
while (m != 0 || n != 0) {
size_t last_m, last_n;
if (m == 0) { last_m = m; last_n = n-1; }
else if (n == 0) { last_m = m-1; last_n = n; }
else {
int32 sub_or_ok = e[m-1][n-1] + (a[m-1] == b[n-1] ? 0 : 1);
int32 del = e[m-1][n] + 1; // assumes a == ref, b == hyp.
int32 ins = e[m][n-1] + 1;
if (sub_or_ok <= std::min(del, ins)) { // choose sub_or_ok if all else equal.
last_m = m-1; last_n = n-1;
} else {
if (del <= ins) { // choose del over ins if equal.
last_m = m-1; last_n = n;
} else {
last_m = m; last_n = n-1;
}
}
}
T a_sym, b_sym;
a_sym = (last_m == m ? eps_symbol : a[last_m]);
b_sym = (last_n == n ? eps_symbol : b[last_n]);
output->push_back(std::make_pair(a_sym, b_sym));
m = last_m;
n = last_n;
}
ReverseVector(output);
return e[M][N];
}
} // end namespace kaldi
#endif // KALDI_UTIL_EDIT_DISTANCE_INL_H_
|