1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
|
// matrix/kaldi-matrix.h
// Copyright 2009-2011 Ondrej Glembek; Microsoft Corporation; Lukas Burget;
// Saarland University; Petr Schwarz; Yanmin Qian;
// Karel Vesely; Go Vivace Inc.; Haihua Xu
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_MATRIX_KALDI_MATRIX_H_
#define KALDI_MATRIX_KALDI_MATRIX_H_ 1
#include "matrix/matrix-common.h"
namespace kaldi {
/// @{ \addtogroup matrix_funcs_scalar
/// We need to declare this here as it will be a friend function.
/// tr(A B), or tr(A B^T).
template<typename Real>
Real TraceMatMat(const MatrixBase<Real> &A, const MatrixBase<Real> &B,
MatrixTransposeType trans = kNoTrans);
/// @}
/// \addtogroup matrix_group
/// @{
/// Base class which provides matrix operations not involving resizing
/// or allocation. Classes Matrix and SubMatrix inherit from it and take care
/// of allocation and resizing.
template<typename Real>
class MatrixBase {
public:
// so this child can access protected members of other instances.
friend class Matrix<Real>;
// friend declarations for CUDA matrices (see ../cudamatrix/)
friend class CuMatrixBase<Real>;
friend class CuMatrix<Real>;
friend class CuSubMatrix<Real>;
friend class CuPackedMatrix<Real>;
friend class PackedMatrix<Real>;
/// Returns number of rows (or zero for emtpy matrix).
inline MatrixIndexT NumRows() const { return num_rows_; }
/// Returns number of columns (or zero for emtpy matrix).
inline MatrixIndexT NumCols() const { return num_cols_; }
/// Stride (distance in memory between each row). Will be >= NumCols.
inline MatrixIndexT Stride() const { return stride_; }
/// Returns size in bytes of the data held by the matrix.
size_t SizeInBytes() const {
return static_cast<size_t>(num_rows_) * static_cast<size_t>(stride_) *
sizeof(Real);
}
/// Gives pointer to raw data (const).
inline const Real* Data() const {
return data_;
}
/// Gives pointer to raw data (non-const).
inline Real* Data() { return data_; }
/// Returns pointer to data for one row (non-const)
inline Real* RowData(MatrixIndexT i) {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return data_ + i * stride_;
}
/// Returns pointer to data for one row (const)
inline const Real* RowData(MatrixIndexT i) const {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return data_ + i * stride_;
}
/// Indexing operator, non-const
/// (only checks sizes if compiled with -DKALDI_PARANOID)
inline Real& operator() (MatrixIndexT r, MatrixIndexT c) {
KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(r) <
static_cast<UnsignedMatrixIndexT>(num_rows_) &&
static_cast<UnsignedMatrixIndexT>(c) <
static_cast<UnsignedMatrixIndexT>(num_cols_));
return *(data_ + r * stride_ + c);
}
/// Indexing operator, provided for ease of debugging (gdb doesn't work
/// with parenthesis operator).
Real &Index (MatrixIndexT r, MatrixIndexT c) { return (*this)(r, c); }
/// Indexing operator, const
/// (only checks sizes if compiled with -DKALDI_PARANOID)
inline const Real operator() (MatrixIndexT r, MatrixIndexT c) const {
KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(r) <
static_cast<UnsignedMatrixIndexT>(num_rows_) &&
static_cast<UnsignedMatrixIndexT>(c) <
static_cast<UnsignedMatrixIndexT>(num_cols_));
return *(data_ + r * stride_ + c);
}
/* Basic setting-to-special values functions. */
/// Sets matrix to zero.
void SetZero();
/// Sets all elements to a specific value.
void Set(Real);
/// Sets to zero, except ones along diagonal [for non-square matrices too]
void SetUnit();
/// Sets to random values of a normal distribution
void SetRandn();
/// Sets to numbers uniformly distributed on (0, 1)
void SetRandUniform();
/* Copying functions. These do not resize the matrix! */
/// Copy given matrix. (no resize is done).
template<typename OtherReal>
void CopyFromMat(const MatrixBase<OtherReal> & M,
MatrixTransposeType trans = kNoTrans);
/// Copy from compressed matrix.
void CopyFromMat(const CompressedMatrix &M);
/// Copy given spmatrix. (no resize is done).
template<typename OtherReal>
void CopyFromSp(const SpMatrix<OtherReal> &M);
/// Copy given tpmatrix. (no resize is done).
template<typename OtherReal>
void CopyFromTp(const TpMatrix<OtherReal> &M,
MatrixTransposeType trans = kNoTrans);
/// Copy from CUDA matrix. Implemented in ../cudamatrix/cu-matrix.h
template<typename OtherReal>
void CopyFromMat(const CuMatrixBase<OtherReal> &M,
MatrixTransposeType trans = kNoTrans);
/// Inverse of vec() operator. Copies vector into matrix, row-by-row.
/// Note that rv.Dim() must either equal NumRows()*NumCols() or
/// NumCols()-- this has two modes of operation.
void CopyRowsFromVec(const VectorBase<Real> &v);
/// This version of CopyRowsFromVec is implemented in ../cudamatrix/cu-vector.cc
void CopyRowsFromVec(const CuVectorBase<Real> &v);
template<typename OtherReal>
void CopyRowsFromVec(const VectorBase<OtherReal> &v);
/// Copies vector into matrix, column-by-column.
/// Note that rv.Dim() must either equal NumRows()*NumCols() or NumRows();
/// this has two modes of operation.
void CopyColsFromVec(const VectorBase<Real> &v);
/// Copy vector into specific column of matrix.
void CopyColFromVec(const VectorBase<Real> &v, const MatrixIndexT col);
/// Copy vector into specific row of matrix.
void CopyRowFromVec(const VectorBase<Real> &v, const MatrixIndexT row);
/// Copy vector into diagonal of matrix.
void CopyDiagFromVec(const VectorBase<Real> &v);
/* Accessing of sub-parts of the matrix. */
/// Return specific row of matrix [const].
inline const SubVector<Real> Row(MatrixIndexT i) const {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return SubVector<Real>(data_ + (i * stride_), NumCols());
}
/// Return specific row of matrix.
inline SubVector<Real> Row(MatrixIndexT i) {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) <
static_cast<UnsignedMatrixIndexT>(num_rows_));
return SubVector<Real>(data_ + (i * stride_), NumCols());
}
/// Return a sub-part of matrix.
inline SubMatrix<Real> Range(const MatrixIndexT row_offset,
const MatrixIndexT num_rows,
const MatrixIndexT col_offset,
const MatrixIndexT num_cols) const {
return SubMatrix<Real>(*this, row_offset, num_rows,
col_offset, num_cols);
}
inline SubMatrix<Real> RowRange(const MatrixIndexT row_offset,
const MatrixIndexT num_rows) const {
return SubMatrix<Real>(*this, row_offset, num_rows, 0, num_cols_);
}
inline SubMatrix<Real> ColRange(const MatrixIndexT col_offset,
const MatrixIndexT num_cols) const {
return SubMatrix<Real>(*this, 0, num_rows_, col_offset, num_cols);
}
/* Various special functions. */
/// Returns sum of all elements in matrix.
Real Sum() const;
/// Returns trace of matrix.
Real Trace(bool check_square = true) const;
// If check_square = true, will crash if matrix is not square.
/// Returns maximum element of matrix.
Real Max() const;
/// Returns minimum element of matrix.
Real Min() const;
/// Element by element multiplication with a given matrix.
void MulElements(const MatrixBase<Real> &A);
/// Divide each element by the corresponding element of a given matrix.
void DivElements(const MatrixBase<Real> &A);
/// Multiply each element with a scalar value.
void Scale(Real alpha);
/// Set, element-by-element, *this = max(*this, A)
void Max(const MatrixBase<Real> &A);
/// Equivalent to (*this) = (*this) * diag(scale). Scaling
/// each column by a scalar taken from that dimension of the vector.
void MulColsVec(const VectorBase<Real> &scale);
/// Equivalent to (*this) = diag(scale) * (*this). Scaling
/// each row by a scalar taken from that dimension of the vector.
void MulRowsVec(const VectorBase<Real> &scale);
/// Divide each row into src.NumCols() equal groups, and then scale i'th row's
/// j'th group of elements by src(i, j). Requires src.NumRows() ==
/// this->NumRows() and this->NumCols() % src.NumCols() == 0.
void MulRowsGroupMat(const MatrixBase<Real> &src);
/// Returns logdet of matrix.
Real LogDet(Real *det_sign = NULL) const;
/// matrix inverse.
/// if inverse_needed = false, will fill matrix with garbage.
/// (only useful if logdet wanted).
void Invert(Real *log_det = NULL, Real *det_sign = NULL,
bool inverse_needed = true);
/// matrix inverse [double].
/// if inverse_needed = false, will fill matrix with garbage
/// (only useful if logdet wanted).
/// Does inversion in double precision even if matrix was not double.
void InvertDouble(Real *LogDet = NULL, Real *det_sign = NULL,
bool inverse_needed = true);
/// Inverts all the elements of the matrix
void InvertElements();
/// Transpose the matrix. This one is only
/// applicable to square matrices (the one in the
/// Matrix child class works also for non-square.
void Transpose();
/// Copies column r from column indices[r] of src.
/// As a special case, if indexes[i] == -1, sets column i to zero
/// indices.size() must equal this->NumCols(),
/// all elements of "reorder" must be in [-1, src.NumCols()-1],
/// and src.NumRows() must equal this.NumRows()
void CopyCols(const MatrixBase<Real> &src,
const std::vector<MatrixIndexT> &indices);
/// Copies row r from row indices[r] of src.
/// As a special case, if indexes[i] == -1, sets row i to zero
/// "reorder".size() must equal this->NumRows(),
/// all elements of "reorder" must be in [-1, src.NumRows()-1],
/// and src.NumCols() must equal this.NumCols()
void CopyRows(const MatrixBase<Real> &src,
const std::vector<MatrixIndexT> &indices);
/// Applies floor to all matrix elements
void ApplyFloor(Real floor_val);
/// Applies floor to all matrix elements
void ApplyCeiling(Real ceiling_val);
/// Calculates log of all the matrix elemnts
void ApplyLog();
/// Exponentiate each of the elements.
void ApplyExp();
/// Applies power to all matrix elements
void ApplyPow(Real power);
/// Apply power to the absolute value of each element.
/// Include the sign of the input element if include_sign == true.
/// If the power is negative and the input to the power is zero,
/// The output will be set zero.
void ApplyPowAbs(Real power, bool include_sign=false);
/// Applies the Heaviside step function (x > 0 ? 1 : 0) to all matrix elements
/// Note: in general you can make different choices for x = 0, but for now
/// please leave it as it (i.e. returning zero) because it affects the
/// RectifiedLinearComponent in the neural net code.
void ApplyHeaviside();
/// Eigenvalue Decomposition of a square NxN matrix into the form (*this) = P D
/// P^{-1}. Be careful: the relationship of D to the eigenvalues we output is
/// slightly complicated, due to the need for P to be real. In the symmetric
/// case D is diagonal and real, but in
/// the non-symmetric case there may be complex-conjugate pairs of eigenvalues.
/// In this case, for the equation (*this) = P D P^{-1} to hold, D must actually
/// be block diagonal, with 2x2 blocks corresponding to any such pairs. If a
/// pair is lambda +- i*mu, D will have a corresponding 2x2 block
/// [lambda, mu; -mu, lambda].
/// Note that if the input matrix (*this) is non-invertible, P may not be invertible
/// so in this case instead of the equation (*this) = P D P^{-1} holding, we have
/// instead (*this) P = P D.
///
/// The non-member function CreateEigenvalueMatrix creates D from eigs_real and eigs_imag.
void Eig(MatrixBase<Real> *P,
VectorBase<Real> *eigs_real,
VectorBase<Real> *eigs_imag) const;
/// The Power method attempts to take the matrix to a power using a method that
/// works in general for fractional and negative powers. The input matrix must
/// be invertible and have reasonable condition (or we don't guarantee the
/// results. The method is based on the eigenvalue decomposition. It will
/// return false and leave the matrix unchanged, if at entry the matrix had
/// real negative eigenvalues (or if it had zero eigenvalues and the power was
/// negative).
bool Power(Real pow);
/** Singular value decomposition
Major limitations:
For nonsquare matrices, we assume m>=n (NumRows >= NumCols), and we return
the "skinny" Svd, i.e. the matrix in the middle is diagonal, and the
one on the left is rectangular.
In Svd, *this = U*diag(S)*Vt.
Null pointers for U and/or Vt at input mean we do not want that output. We
expect that S.Dim() == m, U is either NULL or m by n,
and v is either NULL or n by n.
The singular values are not sorted (use SortSvd for that). */
void DestructiveSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
MatrixBase<Real> *Vt); // Destroys calling matrix.
/// Compute SVD (*this) = U diag(s) Vt. Note that the V in the call is already
/// transposed; the normal formulation is U diag(s) V^T.
/// Null pointers for U or V mean we don't want that output (this saves
/// compute). The singular values are not sorted (use SortSvd for that).
void Svd(VectorBase<Real> *s, MatrixBase<Real> *U,
MatrixBase<Real> *Vt) const;
/// Compute SVD but only retain the singular values.
void Svd(VectorBase<Real> *s) const { Svd(s, NULL, NULL); }
/// Returns smallest singular value.
Real MinSingularValue() const {
Vector<Real> tmp(std::min(NumRows(), NumCols()));
Svd(&tmp);
return tmp.Min();
}
void TestUninitialized() const; // This function is designed so that if any element
// if the matrix is uninitialized memory, valgrind will complain.
/// Returns condition number by computing Svd. Works even if cols > rows.
/// Returns infinity if all singular values are zero.
Real Cond() const;
/// Returns true if matrix is Symmetric.
bool IsSymmetric(Real cutoff = 1.0e-05) const; // replace magic number
/// Returns true if matrix is Diagonal.
bool IsDiagonal(Real cutoff = 1.0e-05) const; // replace magic number
/// Returns true if the matrix is all zeros, except for ones on diagonal. (it
/// does not have to be square). More specifically, this function returns
/// false if for any i, j, (*this)(i, j) differs by more than cutoff from the
/// expression (i == j ? 1 : 0).
bool IsUnit(Real cutoff = 1.0e-05) const; // replace magic number
/// Returns true if matrix is all zeros.
bool IsZero(Real cutoff = 1.0e-05) const; // replace magic number
/// Frobenius norm, which is the sqrt of sum of square elements. Same as Schatten 2-norm,
/// or just "2-norm".
Real FrobeniusNorm() const;
/// Returns true if ((*this)-other).FrobeniusNorm()
/// <= tol * (*this).FrobeniusNorm().
bool ApproxEqual(const MatrixBase<Real> &other, float tol = 0.01) const;
/// Tests for exact equality. It's usually preferable to use ApproxEqual.
bool Equal(const MatrixBase<Real> &other) const;
/// largest absolute value.
Real LargestAbsElem() const; // largest absolute value.
/// Returns log(sum(exp())) without exp overflow
/// If prune > 0.0, it uses a pruning beam, discarding
/// terms less than (max - prune). Note: in future
/// we may change this so that if prune = 0.0, it takes
/// the max, so use -1 if you don't want to prune.
Real LogSumExp(Real prune = -1.0) const;
/// Apply soft-max to the collection of all elements of the
/// matrix and return normalizer (log sum of exponentials).
Real ApplySoftMax();
/// Set each element to the sigmoid of the corresponding element of "src".
void Sigmoid(const MatrixBase<Real> &src);
/// Set each element to y = log(1 + exp(x))
void SoftHinge(const MatrixBase<Real> &src);
/// Apply the function y(i) = (sum_{j = i*G}^{(i+1)*G-1} x_j^(power))^(1 / p).
/// Requires src.NumRows() == this->NumRows() and src.NumCols() % this->NumCols() == 0.
void GroupPnorm(const MatrixBase<Real> &src, Real power);
/// Calculate derivatives for the GroupPnorm function above...
/// if "input" is the input to the GroupPnorm function above (i.e. the "src" variable),
/// and "output" is the result of the computation (i.e. the "this" of that function
/// call), and *this has the same dimension as "input", then it sets each element
/// of *this to the derivative d(output-elem)/d(input-elem) for each element of "input", where
/// "output-elem" is whichever element of output depends on that input element.
void GroupPnormDeriv(const MatrixBase<Real> &input, const MatrixBase<Real> &output,
Real power);
/// Set each element to the tanh of the corresponding element of "src".
void Tanh(const MatrixBase<Real> &src);
// Function used in backpropagating derivatives of the sigmoid function:
// element-by-element, set *this = diff * value * (1.0 - value).
void DiffSigmoid(const MatrixBase<Real> &value,
const MatrixBase<Real> &diff);
// Function used in backpropagating derivatives of the tanh function:
// element-by-element, set *this = diff * (1.0 - value^2).
void DiffTanh(const MatrixBase<Real> &value,
const MatrixBase<Real> &diff);
/** Uses Svd to compute the eigenvalue decomposition of a symmetric positive
* semi-definite matrix: (*this) = rP * diag(rS) * rP^T, with rP an
* orthogonal matrix so rP^{-1} = rP^T. Throws exception if input was not
* positive semi-definite (check_thresh controls how stringent the check is;
* set it to 2 to ensure it won't ever complain, but it will zero out negative
* dimensions in your matrix.
*/
void SymPosSemiDefEig(VectorBase<Real> *s, MatrixBase<Real> *P,
Real check_thresh = 0.001);
friend Real kaldi::TraceMatMat<Real>(const MatrixBase<Real> &A,
const MatrixBase<Real> &B, MatrixTransposeType trans); // tr (A B)
// so it can get around const restrictions on the pointer to data_.
friend class SubMatrix<Real>;
/// Add a scalar to each element
void Add(const Real alpha);
/// Add a scalar to each diagonal element.
void AddToDiag(const Real alpha);
/// *this += alpha * a * b^T
template<typename OtherReal>
void AddVecVec(const Real alpha, const VectorBase<OtherReal> &a,
const VectorBase<OtherReal> &b);
/// [each row of *this] += alpha * v
template<typename OtherReal>
void AddVecToRows(const Real alpha, const VectorBase<OtherReal> &v);
/// [each col of *this] += alpha * v
template<typename OtherReal>
void AddVecToCols(const Real alpha, const VectorBase<OtherReal> &v);
/// *this += alpha * M [or M^T]
void AddMat(const Real alpha, const MatrixBase<Real> &M,
MatrixTransposeType transA = kNoTrans);
/// *this = beta * *this + alpha * M M^T, for symmetric matrices. It only
/// updates the lower triangle of *this. It will leave the matrix asymmetric;
/// if you need it symmetric as a regular matrix, do CopyLowerToUpper().
void SymAddMat2(const Real alpha, const MatrixBase<Real> &M,
MatrixTransposeType transA, Real beta);
/// *this = beta * *this + alpha * diag(v) * M [or M^T].
/// The same as adding M but scaling each row M_i by v(i).
void AddDiagVecMat(const Real alpha, VectorBase<Real> &v,
const MatrixBase<Real> &M, MatrixTransposeType transM,
Real beta = 1.0);
/// *this = beta * *this + alpha * M [or M^T] * diag(v)
/// The same as adding M but scaling each column M_j by v(j).
void AddMatDiagVec(const Real alpha,
const MatrixBase<Real> &M, MatrixTransposeType transM,
VectorBase<Real> &v,
Real beta = 1.0);
/// *this = beta * *this + alpha * A .* B (.* element by element multiplication)
void AddMatMatElements(const Real alpha,
const MatrixBase<Real>& A,
const MatrixBase<Real>& B,
const Real beta);
/// *this += alpha * S
template<typename OtherReal>
void AddSp(const Real alpha, const SpMatrix<OtherReal> &S);
void AddMatMat(const Real alpha,
const MatrixBase<Real>& A, MatrixTransposeType transA,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const Real beta);
/// *this = a * b / c (by element; when c = 0, *this = a)
void AddMatMatDivMat(const MatrixBase<Real>& A,
const MatrixBase<Real>& B,
const MatrixBase<Real>& C);
/// A version of AddMatMat specialized for when the second argument
/// contains a lot of zeroes.
void AddMatSmat(const Real alpha,
const MatrixBase<Real>& A, MatrixTransposeType transA,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const Real beta);
/// A version of AddMatMat specialized for when the first argument
/// contains a lot of zeroes.
void AddSmatMat(const Real alpha,
const MatrixBase<Real>& A, MatrixTransposeType transA,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const Real beta);
/// this <-- beta*this + alpha*A*B*C.
void AddMatMatMat(const Real alpha,
const MatrixBase<Real>& A, MatrixTransposeType transA,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const MatrixBase<Real>& C, MatrixTransposeType transC,
const Real beta);
/// this <-- beta*this + alpha*SpA*B.
// This and the routines below are really
// stubs that need to be made more efficient.
void AddSpMat(const Real alpha,
const SpMatrix<Real>& A,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const Real beta) {
Matrix<Real> M(A);
return AddMatMat(alpha, M, kNoTrans, B, transB, beta);
}
/// this <-- beta*this + alpha*A*B.
void AddTpMat(const Real alpha,
const TpMatrix<Real>& A, MatrixTransposeType transA,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const Real beta) {
Matrix<Real> M(A);
return AddMatMat(alpha, M, transA, B, transB, beta);
}
/// this <-- beta*this + alpha*A*B.
void AddMatSp(const Real alpha,
const MatrixBase<Real>& A, MatrixTransposeType transA,
const SpMatrix<Real>& B,
const Real beta) {
Matrix<Real> M(B);
return AddMatMat(alpha, A, transA, M, kNoTrans, beta);
}
/// this <-- beta*this + alpha*A*B*C.
void AddSpMatSp(const Real alpha,
const SpMatrix<Real> &A,
const MatrixBase<Real>& B, MatrixTransposeType transB,
const SpMatrix<Real>& C,
const Real beta) {
Matrix<Real> M(A), N(C);
return AddMatMatMat(alpha, M, kNoTrans, B, transB, N, kNoTrans, beta);
}
/// this <-- beta*this + alpha*A*B.
void AddMatTp(const Real alpha,
const MatrixBase<Real>& A, MatrixTransposeType transA,
const TpMatrix<Real>& B, MatrixTransposeType transB,
const Real beta) {
Matrix<Real> M(B);
return AddMatMat(alpha, A, transA, M, transB, beta);
}
/// this <-- beta*this + alpha*A*B.
void AddTpTp(const Real alpha,
const TpMatrix<Real>& A, MatrixTransposeType transA,
const TpMatrix<Real>& B, MatrixTransposeType transB,
const Real beta) {
Matrix<Real> M(A), N(B);
return AddMatMat(alpha, M, transA, N, transB, beta);
}
/// this <-- beta*this + alpha*A*B.
// This one is more efficient, not like the others above.
void AddSpSp(const Real alpha,
const SpMatrix<Real>& A, const SpMatrix<Real>& B,
const Real beta);
/// Copy lower triangle to upper triangle (symmetrize)
void CopyLowerToUpper();
/// Copy upper triangle to lower triangle (symmetrize)
void CopyUpperToLower();
/// This function orthogonalizes the rows of a matrix using the Gram-Schmidt
/// process. It is only applicable if NumRows() <= NumCols(). It will use
/// random number generation to fill in rows with something nonzero, in cases
/// where the original matrix was of deficient row rank.
void OrthogonalizeRows();
/// stream read.
/// Use instead of stream<<*this, if you want to add to existing contents.
// Will throw exception on failure.
void Read(std::istream & in, bool binary, bool add = false);
/// write to stream.
void Write(std::ostream & out, bool binary) const;
// Below is internal methods for Svd, user does not have to know about this.
#if !defined(HAVE_ATLAS) && !defined(USE_KALDI_SVD)
// protected:
// Should be protected but used directly in testing routine.
// destroys *this!
void LapackGesvd(VectorBase<Real> *s, MatrixBase<Real> *U,
MatrixBase<Real> *Vt);
#else
protected:
// destroys *this!
bool JamaSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
MatrixBase<Real> *V);
#endif
protected:
/// Initializer, callable only from child.
explicit MatrixBase(Real *data, MatrixIndexT cols, MatrixIndexT rows, MatrixIndexT stride) :
data_(data), num_cols_(cols), num_rows_(rows), stride_(stride) {
KALDI_ASSERT_IS_FLOATING_TYPE(Real);
}
/// Initializer, callable only from child.
/// Empty initializer, for un-initialized matrix.
explicit MatrixBase(): data_(NULL) {
KALDI_ASSERT_IS_FLOATING_TYPE(Real);
}
// Make sure pointers to MatrixBase cannot be deleted.
~MatrixBase() { }
/// A workaround that allows SubMatrix to get a pointer to non-const data
/// for const Matrix. Unfortunately C++ does not allow us to declare a
/// "public const" inheritance or anything like that, so it would require
/// a lot of work to make the SubMatrix class totally const-correct--
/// we would have to override many of the Matrix functions.
inline Real* Data_workaround() const {
return data_;
}
/// data memory area
Real* data_;
/// these atributes store the real matrix size as it is stored in memory
/// including memalignment
MatrixIndexT num_cols_; /// < Number of columns
MatrixIndexT num_rows_; /// < Number of rows
/** True number of columns for the internal matrix. This number may differ
* from num_cols_ as memory alignment might be used. */
MatrixIndexT stride_;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(MatrixBase);
};
/// A class for storing matrices.
template<typename Real>
class Matrix : public MatrixBase<Real> {
public:
/// Empty constructor.
Matrix();
/// Basic constructor. Sets to zero by default.
/// if set_zero == false, memory contents are undefined.
Matrix(const MatrixIndexT r, const MatrixIndexT c,
MatrixResizeType resize_type = kSetZero):
MatrixBase<Real>() { Resize(r, c, resize_type); }
/// Copy constructor from CUDA matrix
/// This is defined in ../cudamatrix/cu-matrix.h
template<typename OtherReal>
explicit Matrix(const CuMatrixBase<OtherReal> &cu,
MatrixTransposeType trans = kNoTrans);
/// Swaps the contents of *this and *other. Shallow swap.
void Swap(Matrix<Real> *other);
/// Defined in ../cudamatrix/cu-matrix.cc
void Swap(CuMatrix<Real> *mat);
/// Constructor from any MatrixBase. Can also copy with transpose.
/// Allocates new memory.
explicit Matrix(const MatrixBase<Real> & M,
MatrixTransposeType trans = kNoTrans);
/// Same as above, but need to avoid default copy constructor.
Matrix(const Matrix<Real> & M); // (cannot make explicit)
/// Copy constructor: as above, but from another type.
template<typename OtherReal>
explicit Matrix(const MatrixBase<OtherReal> & M,
MatrixTransposeType trans = kNoTrans);
/// Copy constructor taking SpMatrix...
/// It is symmetric, so no option for transpose, and NumRows == Cols
template<typename OtherReal>
explicit Matrix(const SpMatrix<OtherReal> & M) : MatrixBase<Real>() {
Resize(M.NumRows(), M.NumRows(), kUndefined);
this->CopyFromSp(M);
}
/// Constructor from CompressedMatrix
explicit Matrix(const CompressedMatrix &C);
/// Copy constructor taking TpMatrix...
template <typename OtherReal>
explicit Matrix(const TpMatrix<OtherReal> & M,
MatrixTransposeType trans = kNoTrans) : MatrixBase<Real>() {
if (trans == kNoTrans) {
Resize(M.NumRows(), M.NumCols(), kUndefined);
this->CopyFromTp(M);
} else {
Resize(M.NumCols(), M.NumRows(), kUndefined);
this->CopyFromTp(M, kTrans);
}
}
/// read from stream.
// Unlike one in base, allows resizing.
void Read(std::istream & in, bool binary, bool add = false);
/// Remove a specified row.
void RemoveRow(MatrixIndexT i);
/// Transpose the matrix. Works for non-square
/// matrices as well as square ones.
void Transpose();
/// Distructor to free matrices.
~Matrix() { Destroy(); }
/// Sets matrix to a specified size (zero is OK as long as both r and c are
/// zero). The value of the new data depends on resize_type:
/// -if kSetZero, the new data will be zero
/// -if kUndefined, the new data will be undefined
/// -if kCopyData, the new data will be the same as the old data in any
/// shared positions, and zero elsewhere.
/// This function takes time proportional to the number of data elements.
void Resize(const MatrixIndexT r,
const MatrixIndexT c,
MatrixResizeType resize_type = kSetZero);
/// Assignment operator that takes MatrixBase.
Matrix<Real> &operator = (const MatrixBase<Real> &other) {
if (MatrixBase<Real>::NumRows() != other.NumRows() ||
MatrixBase<Real>::NumCols() != other.NumCols())
Resize(other.NumRows(), other.NumCols(), kUndefined);
MatrixBase<Real>::CopyFromMat(other);
return *this;
}
/// Assignment operator. Needed for inclusion in std::vector.
Matrix<Real> &operator = (const Matrix<Real> &other) {
if (MatrixBase<Real>::NumRows() != other.NumRows() ||
MatrixBase<Real>::NumCols() != other.NumCols())
Resize(other.NumRows(), other.NumCols(), kUndefined);
MatrixBase<Real>::CopyFromMat(other);
return *this;
}
private:
/// Deallocates memory and sets to empty matrix (dimension 0, 0).
void Destroy();
/// Init assumes the current class contents are invalid (i.e. junk or have
/// already been freed), and it sets the matrix to newly allocated memory with
/// the specified number of rows and columns. r == c == 0 is acceptable. The data
/// memory contents will be undefined.
void Init(const MatrixIndexT r,
const MatrixIndexT c);
};
/// @} end "addtogroup matrix_group"
/// \addtogroup matrix_funcs_io
/// @{
/// A structure containing the HTK header.
/// [TODO: change the style of the variables to Kaldi-compliant]
struct HtkHeader {
/// Number of samples.
int32 mNSamples;
/// Sample period.
int32 mSamplePeriod;
/// Sample size
int16 mSampleSize;
/// Sample kind.
uint16 mSampleKind;
};
// Read HTK formatted features from file into matrix.
template<typename Real>
bool ReadHtk(std::istream &is, Matrix<Real> *M, HtkHeader *header_ptr);
// Write (HTK format) features to file from matrix.
template<typename Real>
bool WriteHtk(std::ostream &os, const MatrixBase<Real> &M, HtkHeader htk_hdr);
// Write (CMUSphinx format) features to file from matrix.
template<typename Real>
bool WriteSphinx(std::ostream &os, const MatrixBase<Real> &M);
/// @} end of "addtogroup matrix_funcs_io"
/**
Sub-matrix representation.
Can work with sub-parts of a matrix using this class.
Note that SubMatrix is not very const-correct-- it allows you to
change the contents of a const Matrix. Be careful!
*/
template<typename Real>
class SubMatrix : public MatrixBase<Real> {
public:
// Initialize a SubMatrix from part of a matrix; this is
// a bit like A(b:c, d:e) in Matlab.
// This initializer is against the proper semantics of "const", since
// SubMatrix can change its contents. It would be hard to implement
// a "const-safe" version of this class.
SubMatrix(const MatrixBase<Real>& T,
const MatrixIndexT ro, // row offset, 0 < ro < NumRows()
const MatrixIndexT r, // number of rows, r > 0
const MatrixIndexT co, // column offset, 0 < co < NumCols()
const MatrixIndexT c); // number of columns, c > 0
// This initializer is mostly intended for use in CuMatrix and related
// classes. Be careful!
SubMatrix(Real *data,
MatrixIndexT num_rows,
MatrixIndexT num_cols,
MatrixIndexT stride);
~SubMatrix<Real>() {}
/// This type of constructor is needed for Range() to work [in Matrix base
/// class]. Cannot make it explicit.
SubMatrix<Real> (const SubMatrix &other):
MatrixBase<Real> (other.data_, other.num_cols_, other.num_rows_,
other.stride_) {}
private:
/// Disallow assignment.
SubMatrix<Real> &operator = (const SubMatrix<Real> &other);
};
/// @} End of "addtogroup matrix_funcs_io".
/// \addtogroup matrix_funcs_scalar
/// @{
// Some declarations. These are traces of products.
template<typename Real>
bool ApproxEqual(const MatrixBase<Real> &A,
const MatrixBase<Real> &B, Real tol = 0.01) {
return A.ApproxEqual(B, tol);
}
template<typename Real>
inline void AssertEqual(const MatrixBase<Real> &A, const MatrixBase<Real> &B,
float tol = 0.01) {
KALDI_ASSERT(A.ApproxEqual(B, tol));
}
/// Returns trace of matrix.
template <typename Real>
double TraceMat(const MatrixBase<Real> &A) { return A.Trace(); }
/// Returns tr(A B C)
template <typename Real>
Real TraceMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
const MatrixBase<Real> &B, MatrixTransposeType transB,
const MatrixBase<Real> &C, MatrixTransposeType transC);
/// Returns tr(A B C D)
template <typename Real>
Real TraceMatMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA,
const MatrixBase<Real> &B, MatrixTransposeType transB,
const MatrixBase<Real> &C, MatrixTransposeType transC,
const MatrixBase<Real> &D, MatrixTransposeType transD);
/// @} end "addtogroup matrix_funcs_scalar"
/// \addtogroup matrix_funcs_misc
/// @{
/// Function to ensure that SVD is sorted. This function is made as generic as
/// possible, to be applicable to other types of problems. s->Dim() should be
/// the same as U->NumCols(), and we sort s from greatest to least absolute
/// value (if sort_on_absolute_value == true) or greatest to least value
/// otherwise, moving the columns of U, if it exists, and the rows of Vt, if it
/// exists, around in the same way. Note: the "absolute value" part won't matter
/// if this is an actual SVD, since singular values are non-negative.
template<typename Real> void SortSvd(VectorBase<Real> *s, MatrixBase<Real> *U,
MatrixBase<Real>* Vt = NULL,
bool sort_on_absolute_value = true);
/// Creates the eigenvalue matrix D that is part of the decomposition used Matrix::Eig.
/// D will be block-diagonal with blocks of size 1 (for real eigenvalues) or 2x2
/// for complex pairs. If a complex pair is lambda +- i*mu, D will have a corresponding
/// 2x2 block [lambda, mu; -mu, lambda].
/// This function will throw if any complex eigenvalues are not in complex conjugate
/// pairs (or the members of such pairs are not consecutively numbered).
template<typename Real>
void CreateEigenvalueMatrix(const VectorBase<Real> &real, const VectorBase<Real> &imag,
MatrixBase<Real> *D);
/// The following function is used in Matrix::Power, and separately tested, so we
/// declare it here mainly for the testing code to see. It takes a complex value to
/// a power using a method that will work for noninteger powers (but will fail if the
/// complex value is real and negative).
template<typename Real>
bool AttemptComplexPower(Real *x_re, Real *x_im, Real power);
/// @} end of addtogroup matrix_funcs_misc
/// \addtogroup matrix_funcs_io
/// @{
template<typename Real>
std::ostream & operator << (std::ostream & Out, const MatrixBase<Real> & M);
template<typename Real>
std::istream & operator >> (std::istream & In, MatrixBase<Real> & M);
// The Matrix read allows resizing, so we override the MatrixBase one.
template<typename Real>
std::istream & operator >> (std::istream & In, Matrix<Real> & M);
template<typename Real>
bool SameDim(const MatrixBase<Real> &M, const MatrixBase<Real> &N) {
return (M.NumRows() == N.NumRows() && M.NumCols() == N.NumCols());
}
/// @} end of \addtogroup matrix_funcs_io
} // namespace kaldi
// we need to include the implementation and some
// template specializations.
#include "matrix/kaldi-matrix-inl.h"
#endif // KALDI_MATRIX_KALDI_MATRIX_H_
|