1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
// matrix/cblas-wrappers.h
// Copyright 2012 Johns Hopkins University (author: Daniel Povey);
// Haihua Xu; Wei Shi
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_MATRIX_CBLAS_WRAPPERS_H_
#define KALDI_MATRIX_CBLAS_WRAPPERS_H_ 1
#include <limits>
#include "matrix/sp-matrix.h"
#include "matrix/kaldi-vector.h"
#include "matrix/kaldi-matrix.h"
#include "matrix/matrix-functions.h"
// Do not include this file directly. It is to be included
// by .cc files in this directory.
namespace kaldi {
inline void cblas_Xcopy(const int N, const float *X, const int incX, float *Y,
const int incY) {
cblas_scopy(N, X, incX, Y, incY);
}
inline void cblas_Xcopy(const int N, const double *X, const int incX, double *Y,
const int incY) {
cblas_dcopy(N, X, incX, Y, incY);
}
inline float cblas_Xasum(const int N, const float *X, const int incX) {
return cblas_sasum(N, X, incX);
}
inline double cblas_Xasum(const int N, const double *X, const int incX) {
return cblas_dasum(N, X, incX);
}
inline void cblas_Xrot(const int N, float *X, const int incX, float *Y,
const int incY, const float c, const float s) {
cblas_srot(N, X, incX, Y, incY, c, s);
}
inline void cblas_Xrot(const int N, double *X, const int incX, double *Y,
const int incY, const double c, const double s) {
cblas_drot(N, X, incX, Y, incY, c, s);
}
inline float cblas_Xdot(const int N, const float *const X,
const int incX, const float *const Y,
const int incY) {
return cblas_sdot(N, X, incX, Y, incY);
}
inline double cblas_Xdot(const int N, const double *const X,
const int incX, const double *const Y,
const int incY) {
return cblas_ddot(N, X, incX, Y, incY);
}
inline void cblas_Xaxpy(const int N, const float alpha, const float *X,
const int incX, float *Y, const int incY) {
cblas_saxpy(N, alpha, X, incX, Y, incY);
}
inline void cblas_Xaxpy(const int N, const double alpha, const double *X,
const int incX, double *Y, const int incY) {
cblas_daxpy(N, alpha, X, incX, Y, incY);
}
inline void cblas_Xscal(const int N, const float alpha, float *data,
const int inc) {
cblas_sscal(N, alpha, data, inc);
}
inline void cblas_Xscal(const int N, const double alpha, double *data,
const int inc) {
cblas_dscal(N, alpha, data, inc);
}
inline void cblas_Xspmv(const float alpha, const int num_rows, const float *Mdata,
const float *v, const int v_inc,
const float beta, float *y, const int y_inc) {
cblas_sspmv(CblasRowMajor, CblasLower, num_rows, alpha, Mdata, v, v_inc, beta, y, y_inc);
}
inline void cblas_Xspmv(const double alpha, const int num_rows, const double *Mdata,
const double *v, const int v_inc,
const double beta, double *y, const int y_inc) {
cblas_dspmv(CblasRowMajor, CblasLower, num_rows, alpha, Mdata, v, v_inc, beta, y, y_inc);
}
inline void cblas_Xtpmv(MatrixTransposeType trans, const float *Mdata,
const int num_rows, float *y, const int y_inc) {
cblas_stpmv(CblasRowMajor, CblasLower, static_cast<CBLAS_TRANSPOSE>(trans),
CblasNonUnit, num_rows, Mdata, y, y_inc);
}
inline void cblas_Xtpmv(MatrixTransposeType trans, const double *Mdata,
const int num_rows, double *y, const int y_inc) {
cblas_dtpmv(CblasRowMajor, CblasLower, static_cast<CBLAS_TRANSPOSE>(trans),
CblasNonUnit, num_rows, Mdata, y, y_inc);
}
inline void cblas_Xtpsv(MatrixTransposeType trans, const float *Mdata,
const int num_rows, float *y, const int y_inc) {
cblas_stpsv(CblasRowMajor, CblasLower, static_cast<CBLAS_TRANSPOSE>(trans),
CblasNonUnit, num_rows, Mdata, y, y_inc);
}
inline void cblas_Xtpsv(MatrixTransposeType trans, const double *Mdata,
const int num_rows, double *y, const int y_inc) {
cblas_dtpsv(CblasRowMajor, CblasLower, static_cast<CBLAS_TRANSPOSE>(trans),
CblasNonUnit, num_rows, Mdata, y, y_inc);
}
// x = alpha * M * y + beta * x
inline void cblas_Xspmv(MatrixIndexT dim, float alpha, const float *Mdata,
const float *ydata, MatrixIndexT ystride,
float beta, float *xdata, MatrixIndexT xstride) {
cblas_sspmv(CblasRowMajor, CblasLower, dim, alpha, Mdata,
ydata, ystride, beta, xdata, xstride);
}
inline void cblas_Xspmv(MatrixIndexT dim, double alpha, const double *Mdata,
const double *ydata, MatrixIndexT ystride,
double beta, double *xdata, MatrixIndexT xstride) {
cblas_dspmv(CblasRowMajor, CblasLower, dim, alpha, Mdata,
ydata, ystride, beta, xdata, xstride);
}
// Implements A += alpha * (x y' + y x'); A is symmetric matrix.
inline void cblas_Xspr2(MatrixIndexT dim, float alpha, const float *Xdata,
MatrixIndexT incX, const float *Ydata, MatrixIndexT incY,
float *Adata) {
cblas_sspr2(CblasRowMajor, CblasLower, dim, alpha, Xdata,
incX, Ydata, incY, Adata);
}
inline void cblas_Xspr2(MatrixIndexT dim, double alpha, const double *Xdata,
MatrixIndexT incX, const double *Ydata, MatrixIndexT incY,
double *Adata) {
cblas_dspr2(CblasRowMajor, CblasLower, dim, alpha, Xdata,
incX, Ydata, incY, Adata);
}
// Implements A += alpha * (x x'); A is symmetric matrix.
inline void cblas_Xspr(MatrixIndexT dim, float alpha, const float *Xdata,
MatrixIndexT incX, float *Adata) {
cblas_sspr(CblasRowMajor, CblasLower, dim, alpha, Xdata, incX, Adata);
}
inline void cblas_Xspr(MatrixIndexT dim, double alpha, const double *Xdata,
MatrixIndexT incX, double *Adata) {
cblas_dspr(CblasRowMajor, CblasLower, dim, alpha, Xdata, incX, Adata);
}
// sgemv,dgemv: y = alpha M x + beta y.
inline void cblas_Xgemv(MatrixTransposeType trans, MatrixIndexT num_rows,
MatrixIndexT num_cols, float alpha, const float *Mdata,
MatrixIndexT stride, const float *xdata,
MatrixIndexT incX, float beta, float *ydata, MatrixIndexT incY) {
cblas_sgemv(CblasRowMajor, static_cast<CBLAS_TRANSPOSE>(trans), num_rows,
num_cols, alpha, Mdata, stride, xdata, incX, beta, ydata, incY);
}
inline void cblas_Xgemv(MatrixTransposeType trans, MatrixIndexT num_rows,
MatrixIndexT num_cols, double alpha, const double *Mdata,
MatrixIndexT stride, const double *xdata,
MatrixIndexT incX, double beta, double *ydata, MatrixIndexT incY) {
cblas_dgemv(CblasRowMajor, static_cast<CBLAS_TRANSPOSE>(trans), num_rows,
num_cols, alpha, Mdata, stride, xdata, incX, beta, ydata, incY);
}
// sgbmv, dgmmv: y = alpha M x + + beta * y.
inline void cblas_Xgbmv(MatrixTransposeType trans, MatrixIndexT num_rows,
MatrixIndexT num_cols, MatrixIndexT num_below,
MatrixIndexT num_above, float alpha, const float *Mdata,
MatrixIndexT stride, const float *xdata,
MatrixIndexT incX, float beta, float *ydata, MatrixIndexT incY) {
cblas_sgbmv(CblasRowMajor, static_cast<CBLAS_TRANSPOSE>(trans), num_rows,
num_cols, num_below, num_above, alpha, Mdata, stride, xdata,
incX, beta, ydata, incY);
}
inline void cblas_Xgbmv(MatrixTransposeType trans, MatrixIndexT num_rows,
MatrixIndexT num_cols, MatrixIndexT num_below,
MatrixIndexT num_above, double alpha, const double *Mdata,
MatrixIndexT stride, const double *xdata,
MatrixIndexT incX, double beta, double *ydata, MatrixIndexT incY) {
cblas_dgbmv(CblasRowMajor, static_cast<CBLAS_TRANSPOSE>(trans), num_rows,
num_cols, num_below, num_above, alpha, Mdata, stride, xdata,
incX, beta, ydata, incY);
}
template<typename Real>
inline void Xgemv_sparsevec(MatrixTransposeType trans, MatrixIndexT num_rows,
MatrixIndexT num_cols, Real alpha, const Real *Mdata,
MatrixIndexT stride, const Real *xdata,
MatrixIndexT incX, Real beta, Real *ydata,
MatrixIndexT incY) {
if (trans == kNoTrans) {
if (beta != 1.0) cblas_Xscal(num_rows, beta, ydata, incY);
for (MatrixIndexT i = 0; i < num_cols; i++) {
Real x_i = xdata[i * incX];
if (x_i == 0.0) continue;
// Add to ydata, the i'th column of M, times alpha * x_i
cblas_Xaxpy(num_rows, x_i * alpha, Mdata + i, stride, ydata, incY);
}
} else {
if (beta != 1.0) cblas_Xscal(num_cols, beta, ydata, incY);
for (MatrixIndexT i = 0; i < num_rows; i++) {
Real x_i = xdata[i * incX];
if (x_i == 0.0) continue;
// Add to ydata, the i'th row of M, times alpha * x_i
cblas_Xaxpy(num_cols, x_i * alpha,
Mdata + (i * stride), 1, ydata, incY);
}
}
}
inline void cblas_Xgemm(const float alpha,
MatrixTransposeType transA,
const float *Adata,
MatrixIndexT a_num_rows, MatrixIndexT a_num_cols, MatrixIndexT a_stride,
MatrixTransposeType transB,
const float *Bdata, MatrixIndexT b_stride,
const float beta,
float *Mdata,
MatrixIndexT num_rows, MatrixIndexT num_cols,MatrixIndexT stride) {
cblas_sgemm(CblasRowMajor, static_cast<CBLAS_TRANSPOSE>(transA),
static_cast<CBLAS_TRANSPOSE>(transB),
num_rows, num_cols, transA == kNoTrans ? a_num_cols : a_num_rows,
alpha, Adata, a_stride, Bdata, b_stride,
beta, Mdata, stride);
}
inline void cblas_Xgemm(const double alpha,
MatrixTransposeType transA,
const double *Adata,
MatrixIndexT a_num_rows, MatrixIndexT a_num_cols, MatrixIndexT a_stride,
MatrixTransposeType transB,
const double *Bdata, MatrixIndexT b_stride,
const double beta,
double *Mdata,
MatrixIndexT num_rows, MatrixIndexT num_cols,MatrixIndexT stride) {
cblas_dgemm(CblasRowMajor, static_cast<CBLAS_TRANSPOSE>(transA),
static_cast<CBLAS_TRANSPOSE>(transB),
num_rows, num_cols, transA == kNoTrans ? a_num_cols : a_num_rows,
alpha, Adata, a_stride, Bdata, b_stride,
beta, Mdata, stride);
}
inline void cblas_Xsymm(const float alpha,
MatrixIndexT sz,
const float *Adata,MatrixIndexT a_stride,
const float *Bdata,MatrixIndexT b_stride,
const float beta,
float *Mdata, MatrixIndexT stride) {
cblas_ssymm(CblasRowMajor, CblasLeft, CblasLower, sz, sz, alpha, Adata,
a_stride, Bdata, b_stride, beta, Mdata, stride);
}
inline void cblas_Xsymm(const double alpha,
MatrixIndexT sz,
const double *Adata,MatrixIndexT a_stride,
const double *Bdata,MatrixIndexT b_stride,
const double beta,
double *Mdata, MatrixIndexT stride) {
cblas_dsymm(CblasRowMajor, CblasLeft, CblasLower, sz, sz, alpha, Adata,
a_stride, Bdata, b_stride, beta, Mdata, stride);
}
// ger: M += alpha x y^T.
inline void cblas_Xger(MatrixIndexT num_rows, MatrixIndexT num_cols, float alpha,
const float *xdata, MatrixIndexT incX, const float *ydata,
MatrixIndexT incY, float *Mdata, MatrixIndexT stride) {
cblas_sger(CblasRowMajor, num_rows, num_cols, alpha, xdata, 1, ydata, 1,
Mdata, stride);
}
inline void cblas_Xger(MatrixIndexT num_rows, MatrixIndexT num_cols, double alpha,
const double *xdata, MatrixIndexT incX, const double *ydata,
MatrixIndexT incY, double *Mdata, MatrixIndexT stride) {
cblas_dger(CblasRowMajor, num_rows, num_cols, alpha, xdata, 1, ydata, 1,
Mdata, stride);
}
// syrk: symmetric rank-k update.
// if trans==kNoTrans, then C = alpha A A^T + beta C
// else C = alpha A^T A + beta C.
// note: dim_c is dim(C), other_dim_a is the "other" dimension of A, i.e.
// num-cols(A) if kNoTrans, or num-rows(A) if kTrans.
// We only need the row-major and lower-triangular option of this, and this
// is hard-coded.
inline void cblas_Xsyrk (
const MatrixTransposeType trans, const MatrixIndexT dim_c,
const MatrixIndexT other_dim_a, const float alpha, const float *A,
const MatrixIndexT a_stride, const float beta, float *C,
const MatrixIndexT c_stride) {
cblas_ssyrk(CblasRowMajor, CblasLower, static_cast<CBLAS_TRANSPOSE>(trans),
dim_c, other_dim_a, alpha, A, a_stride, beta, C, c_stride);
}
inline void cblas_Xsyrk(
const MatrixTransposeType trans, const MatrixIndexT dim_c,
const MatrixIndexT other_dim_a, const double alpha, const double *A,
const MatrixIndexT a_stride, const double beta, double *C,
const MatrixIndexT c_stride) {
cblas_dsyrk(CblasRowMajor, CblasLower, static_cast<CBLAS_TRANSPOSE>(trans),
dim_c, other_dim_a, alpha, A, a_stride, beta, C, c_stride);
}
/// matrix-vector multiply using a banded matrix; we always call this
/// with b = 1 meaning we're multiplying by a diagonal matrix. This is used for
/// elementwise multiplication. We miss some of the arguments out of this
/// wrapper.
inline void cblas_Xsbmv1(
const MatrixIndexT dim,
const double *A,
const double alpha,
const double *x,
const double beta,
double *y) {
cblas_dsbmv(CblasRowMajor, CblasLower, dim, 0, alpha, A,
1, x, 1, beta, y, 1);
}
inline void cblas_Xsbmv1(
const MatrixIndexT dim,
const float *A,
const float alpha,
const float *x,
const float beta,
float *y) {
cblas_ssbmv(CblasRowMajor, CblasLower, dim, 0, alpha, A,
1, x, 1, beta, y, 1);
}
/// This is not really a wrapper for CBLAS as CBLAS does not have this; in future we could
/// extend this somehow.
inline void mul_elements(
const MatrixIndexT dim,
const double *a,
double *b) { // does b *= a, elementwise.
double c1, c2, c3, c4;
MatrixIndexT i;
for (i = 0; i + 4 <= dim; i += 4) {
c1 = a[i] * b[i];
c2 = a[i+1] * b[i+1];
c3 = a[i+2] * b[i+2];
c4 = a[i+3] * b[i+3];
b[i] = c1;
b[i+1] = c2;
b[i+2] = c3;
b[i+3] = c4;
}
for (; i < dim; i++)
b[i] *= a[i];
}
inline void mul_elements(
const MatrixIndexT dim,
const float *a,
float *b) { // does b *= a, elementwise.
float c1, c2, c3, c4;
MatrixIndexT i;
for (i = 0; i + 4 <= dim; i += 4) {
c1 = a[i] * b[i];
c2 = a[i+1] * b[i+1];
c3 = a[i+2] * b[i+2];
c4 = a[i+3] * b[i+3];
b[i] = c1;
b[i+1] = c2;
b[i+2] = c3;
b[i+3] = c4;
}
for (; i < dim; i++)
b[i] *= a[i];
}
// add clapack here
#if !defined(HAVE_ATLAS)
inline void clapack_Xtptri(KaldiBlasInt *num_rows, float *Mdata, KaldiBlasInt *result) {
stptri_(const_cast<char *>("U"), const_cast<char *>("N"), num_rows, Mdata, result);
}
inline void clapack_Xtptri(KaldiBlasInt *num_rows, double *Mdata, KaldiBlasInt *result) {
dtptri_(const_cast<char *>("U"), const_cast<char *>("N"), num_rows, Mdata, result);
}
//
inline void clapack_Xgetrf2(KaldiBlasInt *num_rows, KaldiBlasInt *num_cols,
float *Mdata, KaldiBlasInt *stride, KaldiBlasInt *pivot,
KaldiBlasInt *result) {
sgetrf_(num_rows, num_cols, Mdata, stride, pivot, result);
}
inline void clapack_Xgetrf2(KaldiBlasInt *num_rows, KaldiBlasInt *num_cols,
double *Mdata, KaldiBlasInt *stride, KaldiBlasInt *pivot,
KaldiBlasInt *result) {
dgetrf_(num_rows, num_cols, Mdata, stride, pivot, result);
}
//
inline void clapack_Xgetri2(KaldiBlasInt *num_rows, float *Mdata, KaldiBlasInt *stride,
KaldiBlasInt *pivot, float *p_work,
KaldiBlasInt *l_work, KaldiBlasInt *result) {
sgetri_(num_rows, Mdata, stride, pivot, p_work, l_work, result);
}
inline void clapack_Xgetri2(KaldiBlasInt *num_rows, double *Mdata, KaldiBlasInt *stride,
KaldiBlasInt *pivot, double *p_work,
KaldiBlasInt *l_work, KaldiBlasInt *result) {
dgetri_(num_rows, Mdata, stride, pivot, p_work, l_work, result);
}
//
inline void clapack_Xgesvd(char *v, char *u, KaldiBlasInt *num_cols,
KaldiBlasInt *num_rows, float *Mdata, KaldiBlasInt *stride,
float *sv, float *Vdata, KaldiBlasInt *vstride,
float *Udata, KaldiBlasInt *ustride, float *p_work,
KaldiBlasInt *l_work, KaldiBlasInt *result) {
sgesvd_(v, u,
num_cols, num_rows, Mdata, stride,
sv, Vdata, vstride, Udata, ustride,
p_work, l_work, result);
}
inline void clapack_Xgesvd(char *v, char *u, KaldiBlasInt *num_cols,
KaldiBlasInt *num_rows, double *Mdata, KaldiBlasInt *stride,
double *sv, double *Vdata, KaldiBlasInt *vstride,
double *Udata, KaldiBlasInt *ustride, double *p_work,
KaldiBlasInt *l_work, KaldiBlasInt *result) {
dgesvd_(v, u,
num_cols, num_rows, Mdata, stride,
sv, Vdata, vstride, Udata, ustride,
p_work, l_work, result);
}
//
void inline clapack_Xsptri(KaldiBlasInt *num_rows, float *Mdata,
KaldiBlasInt *ipiv, float *work, KaldiBlasInt *result) {
ssptri_(const_cast<char *>("U"), num_rows, Mdata, ipiv, work, result);
}
void inline clapack_Xsptri(KaldiBlasInt *num_rows, double *Mdata,
KaldiBlasInt *ipiv, double *work, KaldiBlasInt *result) {
dsptri_(const_cast<char *>("U"), num_rows, Mdata, ipiv, work, result);
}
//
void inline clapack_Xsptrf(KaldiBlasInt *num_rows, float *Mdata,
KaldiBlasInt *ipiv, KaldiBlasInt *result) {
ssptrf_(const_cast<char *>("U"), num_rows, Mdata, ipiv, result);
}
void inline clapack_Xsptrf(KaldiBlasInt *num_rows, double *Mdata,
KaldiBlasInt *ipiv, KaldiBlasInt *result) {
dsptrf_(const_cast<char *>("U"), num_rows, Mdata, ipiv, result);
}
#else
inline void clapack_Xgetrf(MatrixIndexT num_rows, MatrixIndexT num_cols,
float *Mdata, MatrixIndexT stride,
int *pivot, int *result) {
*result = clapack_sgetrf(CblasColMajor, num_rows, num_cols,
Mdata, stride, pivot);
}
inline void clapack_Xgetrf(MatrixIndexT num_rows, MatrixIndexT num_cols,
double *Mdata, MatrixIndexT stride,
int *pivot, int *result) {
*result = clapack_dgetrf(CblasColMajor, num_rows, num_cols,
Mdata, stride, pivot);
}
//
inline int clapack_Xtrtri(int num_rows, float *Mdata, MatrixIndexT stride) {
return clapack_strtri(CblasColMajor, CblasUpper, CblasNonUnit, num_rows,
Mdata, stride);
}
inline int clapack_Xtrtri(int num_rows, double *Mdata, MatrixIndexT stride) {
return clapack_dtrtri(CblasColMajor, CblasUpper, CblasNonUnit, num_rows,
Mdata, stride);
}
//
inline void clapack_Xgetri(MatrixIndexT num_rows, float *Mdata, MatrixIndexT stride,
int *pivot, int *result) {
*result = clapack_sgetri(CblasColMajor, num_rows, Mdata, stride, pivot);
}
inline void clapack_Xgetri(MatrixIndexT num_rows, double *Mdata, MatrixIndexT stride,
int *pivot, int *result) {
*result = clapack_dgetri(CblasColMajor, num_rows, Mdata, stride, pivot);
}
#endif
}
// namespace kaldi
#endif
|