summaryrefslogtreecommitdiff
path: root/htk_io/tools/tnet_to_nerv.cpp
blob: a779a25da24e33b088334ff284d2676d1ce27770 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <cstdio>
#include <fstream>
#include <string>
#include <cstring>
#include <cstdlib>
char token[1024];
char output[1024];
double **mat;
int main(int argc, char **argv) {
    std::ofstream fout;
    fout.open(argv[1]);
    int cnt = 0;
    while (scanf("%s", token) != EOF)
    {
        int nrow, ncol;
        int i, j;
        if (strcmp(token, "<biasedlinearity>") == 0)
        {
            scanf("%d %d", &ncol, &nrow);
            scanf("%s %d %d", token, &ncol, &nrow);
            printf("%d %d\n", nrow, ncol);
            mat = (double **)malloc(nrow * sizeof(double *));
            for (i = 0; i < nrow; i++)
                mat[i] = (double *)malloc(ncol * sizeof(double));
            for (j = 0; j < ncol; j++)
                for (i = 0; i < nrow; i++)
                    scanf("%lf", mat[i] + j);
            long base = fout.tellp();
            sprintf(output, "%16d", 0);
            fout << output;
            sprintf(output, "{type=\"nerv.LinearTransParam\",id=\"affine%d_ltp\"}\n",
                            cnt);
            fout << output;
            sprintf(output, "%d %d\n", nrow, ncol);
            fout << output;
            for (i = 0; i < nrow; i++)
            {
                for (j = 0; j < ncol; j++)
                    fout << mat[i][j] << " ";
                fout << std::endl;
                free(mat[i]);
            }
            free(mat);
            long length = fout.tellp() - base;
            fout.seekp(base);
            sprintf(output, "[%13lu]\n", length);
            fout << output;
            fout.seekp(0, std::ios_base::end);
            if (scanf("%s %d", token, &ncol) == 2 && *token == 'v')
            {
                base = fout.tellp();
                for (j = 0; j < ncol; j++)
                    scanf("%lf", mat[0] + j);
                sprintf(output, "%16d", 0);
                fout << output;
                sprintf(output, "{type=\"nerv.BiasParam\",id=\"affine%d_bp\"}\n",
                        cnt);
                fout << output;
                sprintf(output, "1 %d\n", ncol);
                fout << output;
                for (j = 0; j < ncol; j++)
                    fout << mat[0][j] << " ";
                fout << std::endl;
                length = fout.tellp() - base;
                fout.seekp(base);
                sprintf(output, "[%13lu]\n", length);
                fout << output;
                fout.seekp(0, std::ios_base::end);
                cnt++;
            }
        }
    }
    return 0;
}