diff options
Diffstat (limited to 'kaldi_io/src/kaldi/util/edit-distance-inl.h')
-rw-r--r-- | kaldi_io/src/kaldi/util/edit-distance-inl.h | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/kaldi_io/src/kaldi/util/edit-distance-inl.h b/kaldi_io/src/kaldi/util/edit-distance-inl.h new file mode 100644 index 0000000..ebbfb71 --- /dev/null +++ b/kaldi_io/src/kaldi/util/edit-distance-inl.h @@ -0,0 +1,189 @@ +// util/edit-distance-inl.h + +// Copyright 2009-2011 Microsoft Corporation; Haihua Xu; Yanmin Qian + +// See ../../COPYING for clarification regarding multiple authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at + +// http://www.apache.org/licenses/LICENSE-2.0 + +// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED +// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, +// MERCHANTABLITY OR NON-INFRINGEMENT. +// See the Apache 2 License for the specific language governing permissions and +// limitations under the License. + +#ifndef KALDI_UTIL_EDIT_DISTANCE_INL_H_ +#define KALDI_UTIL_EDIT_DISTANCE_INL_H_ +#include "util/stl-utils.h" + + +namespace kaldi { + +template<class T> +int32 LevenshteinEditDistance(const std::vector<T> &a, + const std::vector<T> &b) { + // Algorithm: + // write A and B for the sequences, with elements a_0 .. + // let |A| = M and |B| = N be the lengths, and have + // elements a_0 ... a_{M-1} and b_0 ... b_{N-1}. + // We are computing the recursion + // E(m, n) = min( E(m-1, n-1) + (1-delta(a_{m-1}, b_{n-1})), + // E(m-1, n), + // E(m, n-1) ). + // where E(m, n) is defined for m = 0..M and n = 0..N and out-of- + // bounds quantities are considered to be infinity (i.e. the + // recursion does not visit them). + + // We do this computation using a vector e of size N+1. + // The outer iterations range over m = 0..M. + + int M = a.size(), N = b.size(); + std::vector<int32> e(N+1); + std::vector<int32> e_tmp(N+1); + // initialize e. + for (size_t i = 0; i < e.size(); i++) + e[i] = i; + for (int32 m = 1; m <= M; m++) { + // computing E(m, .) from E(m-1, .) + // handle special case n = 0: + e_tmp[0] = e[0] + 1; + + for (int32 n = 1; n <= N; n++) { + int32 term1 = e[n-1] + (a[m-1] == b[n-1] ? 0 : 1); + int32 term2 = e[n] + 1; + int32 term3 = e_tmp[n-1] + 1; + e_tmp[n] = std::min(term1, std::min(term2, term3)); + } + e = e_tmp; + } + return e.back(); +} +// +struct error_stats{ + int32 ins_num; + int32 del_num; + int32 sub_num; + int32 total_cost; // minimum total cost to the current alignment. +}; +// Note that both hyp and ref should not contain noise word in +// the following implementation. + +template<class T> +int32 LevenshteinEditDistance(const std::vector<T> &ref, + const std::vector<T> &hyp, + int32 *ins, int32 *del, int32 *sub) { + // temp sequence to remember error type and stats. + std::vector<error_stats> e(ref.size()+1); + std::vector<error_stats> cur_e(ref.size()+1); + // initialize the first hypothesis aligned to the reference at each + // position:[hyp_index =0][ref_index] + for (size_t i =0; i < e.size(); i ++) { + e[i].ins_num = 0; + e[i].sub_num = 0; + e[i].del_num = i; + e[i].total_cost = i; + } + + // for other alignments + for (size_t hyp_index = 1; hyp_index <= hyp.size(); hyp_index ++) { + cur_e[0] = e[0]; + cur_e[0].ins_num ++; + cur_e[0].total_cost ++; + for (size_t ref_index = 1; ref_index <= ref.size(); ref_index ++) { + + int32 ins_err = e[ref_index].total_cost + 1; + int32 del_err = cur_e[ref_index-1].total_cost + 1; + int32 sub_err = e[ref_index-1].total_cost; + if (hyp[hyp_index-1] != ref[ref_index-1]) + sub_err ++; + + if (sub_err < ins_err && sub_err < del_err) { + cur_e[ref_index] =e[ref_index-1]; + if (hyp[hyp_index-1] != ref[ref_index-1]) + cur_e[ref_index].sub_num ++; // substitution error should be increased + cur_e[ref_index].total_cost = sub_err; + }else if (del_err < ins_err ) { + cur_e[ref_index] = cur_e[ref_index-1]; + cur_e[ref_index].total_cost = del_err; + cur_e[ref_index].del_num ++; // deletion number is increased. + }else{ + cur_e[ref_index] = e[ref_index]; + cur_e[ref_index].total_cost = ins_err; + cur_e[ref_index].ins_num ++; // insertion number is increased. + } + } + e = cur_e; // alternate for the next recursion. + } + size_t ref_index = e.size()-1; + *ins = e[ref_index].ins_num, *del = e[ref_index].del_num, *sub = e[ref_index].sub_num; + return e[ref_index].total_cost; +} + +template<class T> +int32 LevenshteinAlignment(const std::vector<T> &a, + const std::vector<T> &b, + T eps_symbol, + std::vector<std::pair<T, T> > *output) { + // Check inputs: + { + KALDI_ASSERT(output != NULL); + for (size_t i = 0; i < a.size(); i++) KALDI_ASSERT(a[i] != eps_symbol); + for (size_t i = 0; i < b.size(); i++) KALDI_ASSERT(b[i] != eps_symbol); + } + output->clear(); + // This is very memory-inefficiently implemented using a vector of vectors. + size_t M = a.size(), N = b.size(); + size_t m, n; + std::vector<std::vector<int32> > e(M+1); + for (m = 0; m <=M; m++) e[m].resize(N+1); + for (n = 0; n <= N; n++) + e[0][n] = n; + for (m = 1; m <= M; m++) { + e[m][0] = e[m-1][0] + 1; + for (n = 1; n <= N; n++) { + int32 sub_or_ok = e[m-1][n-1] + (a[m-1] == b[n-1] ? 0 : 1); + int32 del = e[m-1][n] + 1; // assumes a == ref, b == hyp. + int32 ins = e[m][n-1] + 1; + e[m][n] = std::min(sub_or_ok, std::min(del, ins)); + } + } + // get time-reversed output first: trace back. + m = M; n = N; + while (m != 0 || n != 0) { + size_t last_m, last_n; + if (m == 0) { last_m = m; last_n = n-1; } + else if (n == 0) { last_m = m-1; last_n = n; } + else { + int32 sub_or_ok = e[m-1][n-1] + (a[m-1] == b[n-1] ? 0 : 1); + int32 del = e[m-1][n] + 1; // assumes a == ref, b == hyp. + int32 ins = e[m][n-1] + 1; + if (sub_or_ok <= std::min(del, ins)) { // choose sub_or_ok if all else equal. + last_m = m-1; last_n = n-1; + } else { + if (del <= ins) { // choose del over ins if equal. + last_m = m-1; last_n = n; + } else { + last_m = m; last_n = n-1; + } + } + } + T a_sym, b_sym; + a_sym = (last_m == m ? eps_symbol : a[last_m]); + b_sym = (last_n == n ? eps_symbol : b[last_n]); + output->push_back(std::make_pair(a_sym, b_sym)); + m = last_m; + n = last_n; + } + ReverseVector(output); + return e[M][N]; +} + + +} // end namespace kaldi + +#endif // KALDI_UTIL_EDIT_DISTANCE_INL_H_ |