summaryrefslogtreecommitdiff
path: root/kaldi_io/src/kaldi/matrix/kaldi-gpsr.h
diff options
context:
space:
mode:
Diffstat (limited to 'kaldi_io/src/kaldi/matrix/kaldi-gpsr.h')
-rw-r--r--kaldi_io/src/kaldi/matrix/kaldi-gpsr.h166
1 files changed, 0 insertions, 166 deletions
diff --git a/kaldi_io/src/kaldi/matrix/kaldi-gpsr.h b/kaldi_io/src/kaldi/matrix/kaldi-gpsr.h
deleted file mode 100644
index c294bdd..0000000
--- a/kaldi_io/src/kaldi/matrix/kaldi-gpsr.h
+++ /dev/null
@@ -1,166 +0,0 @@
-// matrix/kaldi-gpsr.h
-
-// Copyright 2012 Arnab Ghoshal
-
-// See ../../COPYING for clarification regarding multiple authors
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
-// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
-// MERCHANTABLITY OR NON-INFRINGEMENT.
-// See the Apache 2 License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef KALDI_MATRIX_KALDI_GPSR_H_
-#define KALDI_MATRIX_KALDI_GPSR_H_
-
-#include <string>
-#include <vector>
-
-#include "base/kaldi-common.h"
-#include "matrix/matrix-lib.h"
-#include "itf/options-itf.h"
-
-namespace kaldi {
-
-/// This is an implementation of the GPSR algorithm. See, Figueiredo, Nowak and
-/// Wright, "Gradient Projection for Sparse Reconstruction: Application to
-/// Compressed Sensing and Other Inverse Problems," IEEE Journal of Selected
-/// Topics in Signal Processing, vol. 1, no. 4, pp. 586-597, 2007.
-/// http://dx.doi.org/10.1109/JSTSP.2007.910281
-
-/// The GPSR algorithm, described in Figueiredo, et al., 2007, solves:
-/// \f[ \min_x 0.5 * ||y - Ax||_2^2 + \tau ||x||_1, \f]
-/// where \f$ x \in R^n, y \in R^k \f$, and \f$ A \in R^{n \times k} \f$.
-/// In this implementation, we solve:
-/// \f[ \min_x 0.5 * x^T H x - g^T x + \tau ||x||_1, \f]
-/// which is the more natural form in which such problems arise in our case.
-/// Here, \f$ H = A^T A \in R^{n \times n} \f$ and \f$ g = A^T y \in R^n \f$.
-
-
-/** \struct GpsrConfig
- * Configuration variables needed in the GPSR algorithm.
- */
-struct GpsrConfig {
- bool use_gpsr_bb; ///< Use the Barzilai-Borwein gradient projection method
-
- /// The following options are common to both the basic & Barzilai-Borwein
- /// versions of GPSR
- double stop_thresh; ///< Stopping threshold
- int32 max_iters; ///< Maximum number of iterations
- double gpsr_tau; ///< Regularization scale
- double alpha_min; ///< Minimum step size in the feasible direction
- double alpha_max; ///< Maximum step size in the feasible direction
- double max_sparsity; ///< Maximum percentage of dimensions set to 0
- double tau_reduction; ///< Multiply tau by this if max_sparsity reached
-
- /// The following options are for the backtracking line search in basic GPSR.
- /// Step size reduction factor in backtracking line search. 0 < beta < 1
- double gpsr_beta;
- /// Improvement factor in backtracking line search, i.e. the new objective
- /// function must be less than the old one by mu times the gradient in the
- /// direction of the change in x. 0 < mu < 1
- double gpsr_mu;
- int32 max_iters_backtrak; ///< Max iterations for backtracking line search
-
- bool debias; ///< Do debiasing, i.e. unconstrained optimization at the end
- double stop_thresh_debias; ///< Stopping threshold for debiasing stage
- int32 max_iters_debias; ///< Maximum number of iterations for debiasing stage
-
- GpsrConfig() {
- use_gpsr_bb = true;
-
- stop_thresh = 0.005;
- max_iters = 100;
- gpsr_tau = 10;
- alpha_min = 1.0e-10;
- alpha_max = 1.0e+20;
- max_sparsity = 0.9;
- tau_reduction = 0.8;
-
- gpsr_beta = 0.5;
- gpsr_mu = 0.1;
- max_iters_backtrak = 50;
-
- debias = false;
- stop_thresh_debias = 0.001;
- max_iters_debias = 50;
- }
-
- void Register(OptionsItf *po);
-};
-
-inline void GpsrConfig::Register(OptionsItf *po) {
- std::string module = "GpsrConfig: ";
- po->Register("use-gpsr-bb", &use_gpsr_bb, module+
- "Use the Barzilai-Borwein gradient projection method.");
-
- po->Register("stop-thresh", &stop_thresh, module+
- "Stopping threshold for GPSR.");
- po->Register("max-iters", &max_iters, module+
- "Maximum number of iterations of GPSR.");
- po->Register("gpsr-tau", &gpsr_tau, module+
- "Regularization scale for GPSR.");
- po->Register("alpha-min", &alpha_min, module+
- "Minimum step size in feasible direction.");
- po->Register("alpha-max", &alpha_max, module+
- "Maximum step size in feasible direction.");
- po->Register("max-sparsity", &max_sparsity, module+
- "Maximum percentage of dimensions set to 0.");
- po->Register("tau-reduction", &tau_reduction, module+
- "Multiply tau by this if maximum sparsity is reached.");
-
- po->Register("gpsr-beta", &gpsr_beta, module+
- "Step size reduction factor in backtracking line search (0<beta<1).");
- po->Register("gpsr-mu", &gpsr_mu, module+
- "Improvement factor in backtracking line search (0<mu<1).");
- po->Register("max-iters-backtrack", &max_iters_backtrak, module+
- "Maximum number of iterations of backtracking line search.");
-
- po->Register("debias", &debias, module+
- "Do final debiasing step.");
- po->Register("stop-thresh-debias", &stop_thresh_debias, module+
- "Stopping threshold for debiaisng step.");
- po->Register("max-iters-debias", &max_iters_debias, module+
- "Maximum number of iterations of debiasing.");
-}
-
-/// Solves a quadratic program in \f$ x \f$, with L_1 regularization:
-/// \f[ \min_x 0.5 * x^T H x - g^T x + \tau ||x||_1. \f]
-/// This is similar to SolveQuadraticProblem() in sp-matrix.h with an added
-/// L_1 term.
-template<typename Real>
-Real Gpsr(const GpsrConfig &opts, const SpMatrix<Real> &H,
- const Vector<Real> &g, Vector<Real> *x,
- const char *debug_str = "[unknown]") {
- if (opts.use_gpsr_bb)
- return GpsrBB(opts, H, g, x, debug_str);
- else
- return GpsrBasic(opts, H, g, x, debug_str);
-}
-
-/// This is the basic GPSR algorithm, where the step size is determined by a
-/// backtracking line search. The line search is called "Armijo rule along the
-/// projection arc" in Bertsekas, Nonlinear Programming, 2nd ed. page 230.
-template<typename Real>
-Real GpsrBasic(const GpsrConfig &opts, const SpMatrix<Real> &H,
- const Vector<Real> &g, Vector<Real> *x,
- const char *debug_str = "[unknown]");
-
-/// This is the paper calls the Barzilai-Borwein variant. This is a constrained
-/// Netwon's method where the Hessian is approximated by scaled identity matrix
-template<typename Real>
-Real GpsrBB(const GpsrConfig &opts, const SpMatrix<Real> &H,
- const Vector<Real> &g, Vector<Real> *x,
- const char *debug_str = "[unknown]");
-
-
-} // namespace kaldi
-
-#endif // KALDI_MATRIX_KALDI_GPSR_H_