summaryrefslogtreecommitdiff
path: root/tutorial
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2016-02-29 21:35:57 +0800
committerDeterminant <[email protected]>2016-02-29 21:35:57 +0800
commitd9e03b7d2c14549ab480d5e3b31518be4cdc8eed (patch)
treebe9507abe92f7e31e64507b4c4958f278cf64afa /tutorial
parent534b039d297b9f2f83f889e2592686d79569e141 (diff)
add decode part to the nerv-kaldi tutorial
Diffstat (limited to 'tutorial')
-rw-r--r--tutorial/howto_pretrain_from_kaldi.rst61
1 files changed, 59 insertions, 2 deletions
diff --git a/tutorial/howto_pretrain_from_kaldi.rst b/tutorial/howto_pretrain_from_kaldi.rst
index 95b5f36..ff6ef3d 100644
--- a/tutorial/howto_pretrain_from_kaldi.rst
+++ b/tutorial/howto_pretrain_from_kaldi.rst
@@ -31,11 +31,16 @@ How to Use a Pretrained nnet Model from Kaldi
by the original stage 2).
- Run ``local/nnet/run_dnn.sh`` (first two stages).
-- You'll find directory like ``dnn4_pretrain-dbn`` and ``dnn4_pretrain-dbn_dnn`` inside the ``exp/``. They correspond to stage 1 and stage 2 respectively. To use NERV to do stage 2 instead, we need the pretrained network and the global transformation from stage 1:
+- You'll find directory like ``dnn4_pretrain-dbn`` and
+ ``dnn4_pretrain-dbn_dnn`` inside the ``exp/``. They correspond to stage 1 and
+ stage 2 respectively. To use NERV to do stage 2 instead, we need the
+ pretrained network and the global transformation from stage 1:
- Check the file ``exp/dnn4_pretrain-dbn/6.dbn`` exists. (pretrained network)
- Check the file ``exp/dnn4_pretrain-dbn/tr_splice5_cmvn-g.nnet`` exists. (global transformation)
- - Run script from ``kaldi_io/tools/convert_from_kaldi_pretrain.sh`` to generate the parameters for the output layer and the script files for training and cross-validation set.
+ - Run script from ``kaldi_io/tools/convert_from_kaldi_pretrain.sh`` to
+ generate the parameters for the output layer and the script files for
+ training and cross-validation set.
- The previous conversion commands will automatically give identifiers to the
parameters read from the Kaldi network file. The identifiers are like, for
@@ -58,3 +63,55 @@ How to Use a Pretrained nnet Model from Kaldi
- followed by an argument ``timit_mybaseline.lua`` to the scheduler,
specifying the network you want to train and some relevant settings, such
as where to find the initialized parameters and learning rate, etc.
+
+- Finally, after about 13 iterations, the funetune ends. There are two ways to
+ decode your model:
+
+ - Plan A:
+
+ - Open your ``timit_mybaseline.lua`` again and modify ``decode_param`` to
+ your final chunk file (the file with an extension ``.nerv``) and your
+ global transformation chunk file once used in training. This part lets
+ the decoder know about the set of parameters for decoding.
+
+ - Copy the script ``nerv/speech/kaldi_io/README.timit`` to your Kaldi
+ working directory (``timit/s5``) and modify the paths listed in the
+ script.
+
+ - Run the modified ``README.timit`` in ``s5`` directory (where there is the
+ ``path.sh``).
+
+ - After decoding, run ``bash RESULT exp/dnn4_nerv`` to see the results.
+
+ - Plan B: In this plan, we manually convert the trained model back to Kaldi
+ nnet format, and use Kaldi to decode.
+
+ - Create a copy of ``nerv/speech/kaldi_io/tools/nerv_to_kaldi.lua``.
+
+ - Modify the list named ``lnames`` to list the name of layers you want to
+ put into the output Kaldi parameter file in order. (You don't actually
+ need to change for this tutorial) You may ask why the NERV-to-Kaldi
+ converstion is so cumbersome. This is because Kaldi nnet is a special
+ case of more general NERV toolkit --- it only allows stacked DNNs and
+ therefore Kaldi-to-NERV conversion is lossless but the other direction is
+ not. Your future NERV network may have multiple branches and that's why
+ you need to specify how to select and "stack" your layers in the Kaldi
+ parameter output.
+
+ - Do the conversion by:
+
+ ::
+
+ cat your_trained_params.nerv your_global_trans.nerv > all.nerv
+ install/bin/nerv nerv_to_kaldi.lua timit_mybaseline.lua all.nerv your_kaldi_output.nnet
+
+ - Finally, locate the directory of stage 2: ``exp/dnn4_pretrain-dbn_dnn``
+ and temporarily change the symbolic link for the final network file to the converted one:
+
+ ::
+
+ cd exp/dnn4_pretrain-dbn_dnn
+ mv final.nnet final.nnet.orig
+ ln -sv your_kaldi_output.nnet final.nnet
+
+ Then proceed a normal Kaldi decoding.