diff options
author | Determinant <[email protected]> | 2015-08-14 11:51:42 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-08-14 11:51:42 +0800 |
commit | 96a32415ab43377cf1575bd3f4f2980f58028209 (patch) | |
tree | 30a2d92d73e8f40ac87b79f6f56e227bfc4eea6e /kaldi_io/src/kaldi/tree/clusterable-classes.h | |
parent | c177a7549bd90670af4b29fa813ddea32cfe0f78 (diff) |
add implementation for kaldi io (by ymz)
Diffstat (limited to 'kaldi_io/src/kaldi/tree/clusterable-classes.h')
-rw-r--r-- | kaldi_io/src/kaldi/tree/clusterable-classes.h | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/kaldi_io/src/kaldi/tree/clusterable-classes.h b/kaldi_io/src/kaldi/tree/clusterable-classes.h new file mode 100644 index 0000000..817d0c6 --- /dev/null +++ b/kaldi_io/src/kaldi/tree/clusterable-classes.h @@ -0,0 +1,158 @@ +// tree/clusterable-classes.h + +// Copyright 2009-2011 Microsoft Corporation; Saarland University +// 2014 Daniel Povey + +// See ../../COPYING for clarification regarding multiple authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED +// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, +// MERCHANTABLITY OR NON-INFRINGEMENT. +// See the Apache 2 License for the specific language governing permissions and +// limitations under the License. + +#ifndef KALDI_TREE_CLUSTERABLE_CLASSES_H_ +#define KALDI_TREE_CLUSTERABLE_CLASSES_H_ 1 + +#include <string> +#include "itf/clusterable-itf.h" +#include "matrix/matrix-lib.h" + +namespace kaldi { + +// Note: see sgmm/sgmm-clusterable.h for an SGMM-based clusterable +// class. We didn't include it here, to avoid adding an extra +// dependency to this directory. + +/// \addtogroup clustering_group +/// @{ + +/// ScalarClusterable clusters scalars with x^2 loss. +class ScalarClusterable: public Clusterable { + public: + ScalarClusterable(): x_(0), x2_(0), count_(0) {} + explicit ScalarClusterable(BaseFloat x): x_(x), x2_(x*x), count_(1) {} + virtual std::string Type() const { return "scalar"; } + virtual BaseFloat Objf() const; + virtual void SetZero() { count_ = x_ = x2_ = 0.0; } + virtual void Add(const Clusterable &other_in); + virtual void Sub(const Clusterable &other_in); + virtual Clusterable* Copy() const; + virtual BaseFloat Normalizer() const { + return static_cast<BaseFloat>(count_); + } + + // Function to write data to stream. Will organize input later [more complex] + virtual void Write(std::ostream &os, bool binary) const; + virtual Clusterable* ReadNew(std::istream &is, bool binary) const; + + std::string Info(); // For debugging. + BaseFloat Mean() { return (count_ != 0 ? x_/count_ : 0.0); } + private: + BaseFloat x_; + BaseFloat x2_; + BaseFloat count_; + + void Read(std::istream &is, bool binary); +}; + + +/// GaussClusterable wraps Gaussian statistics in a form accessible +/// to generic clustering algorithms. +class GaussClusterable: public Clusterable { + public: + GaussClusterable(): count_(0.0), var_floor_(0.0) {} + GaussClusterable(int32 dim, BaseFloat var_floor): + count_(0.0), stats_(2, dim), var_floor_(var_floor) {} + + GaussClusterable(const Vector<BaseFloat> &x_stats, + const Vector<BaseFloat> &x2_stats, + BaseFloat var_floor, BaseFloat count); + + virtual std::string Type() const { return "gauss"; } + void AddStats(const VectorBase<BaseFloat> &vec, BaseFloat weight = 1.0); + virtual BaseFloat Objf() const; + virtual void SetZero(); + virtual void Add(const Clusterable &other_in); + virtual void Sub(const Clusterable &other_in); + virtual BaseFloat Normalizer() const { return count_; } + virtual Clusterable *Copy() const; + virtual void Scale(BaseFloat f); + virtual void Write(std::ostream &os, bool binary) const; + virtual Clusterable *ReadNew(std::istream &is, bool binary) const; + virtual ~GaussClusterable() {} + + BaseFloat count() const { return count_; } + // The next two functions are not const-correct, because of SubVector. + SubVector<double> x_stats() const { return stats_.Row(0); } + SubVector<double> x2_stats() const { return stats_.Row(1); } + private: + double count_; + Matrix<double> stats_; // two rows: sum, then sum-squared. + double var_floor_; // should be common for all objects created. + + void Read(std::istream &is, bool binary); +}; + +/// @} end of "addtogroup clustering_group" + +inline void GaussClusterable::SetZero() { + count_ = 0; + stats_.SetZero(); +} + +inline GaussClusterable::GaussClusterable(const Vector<BaseFloat> &x_stats, + const Vector<BaseFloat> &x2_stats, + BaseFloat var_floor, BaseFloat count): + count_(count), stats_(2, x_stats.Dim()), var_floor_(var_floor) { + stats_.Row(0).CopyFromVec(x_stats); + stats_.Row(1).CopyFromVec(x2_stats); +} + + +/// VectorClusterable wraps vectors in a form accessible to generic clustering +/// algorithms. Each vector is associated with a weight; these could be 1.0. +/// The objective function (to be maximized) is the negated sum of squared +/// distances from the cluster center to each vector, times that vector's +/// weight. +class VectorClusterable: public Clusterable { + public: + VectorClusterable(): weight_(0.0), sumsq_(0.0) {} + + VectorClusterable(const Vector<BaseFloat> &vector, + BaseFloat weight); + + virtual std::string Type() const { return "vector"; } + // Objf is negated weighted sum of squared distances. + virtual BaseFloat Objf() const; + virtual void SetZero() { weight_ = 0.0; sumsq_ = 0.0; stats_.Set(0.0); } + virtual void Add(const Clusterable &other_in); + virtual void Sub(const Clusterable &other_in); + virtual BaseFloat Normalizer() const { return weight_; } + virtual Clusterable *Copy() const; + virtual void Scale(BaseFloat f); + virtual void Write(std::ostream &os, bool binary) const; + virtual Clusterable *ReadNew(std::istream &is, bool binary) const; + virtual ~VectorClusterable() {} + + private: + double weight_; // sum of weights of the source vectors. Never negative. + Vector<double> stats_; // Equals the weighted sum of the source vectors. + double sumsq_; // Equals the sum over all sources, of weight_ * vec.vec, + // where vec = stats_ / weight_. Used in computing + // the objective function. + void Read(std::istream &is, bool binary); +}; + + + +} // end namespace kaldi. + +#endif // KALDI_TREE_CLUSTERABLE_CLASSES_H_ |