summaryrefslogtreecommitdiff
path: root/kaldi_io/src/kaldi/base/kaldi-math.h
diff options
context:
space:
mode:
authorTed Yin <[email protected]>2015-08-14 17:42:26 +0800
committerTed Yin <[email protected]>2015-08-14 17:42:26 +0800
commitc3cffb58b9921d78753336421b52b9ffdaa5515c (patch)
treebfea20e97c200cf734021e3756d749c892e658a4 /kaldi_io/src/kaldi/base/kaldi-math.h
parent10cce5f6a5c9e2f8e00d5a2a4d87c9cb7c26bf4c (diff)
parentdfdd17afc2e984ec6c32ea01290f5c76309a456a (diff)
Merge pull request #2 from yimmon/master
remove needless files
Diffstat (limited to 'kaldi_io/src/kaldi/base/kaldi-math.h')
-rw-r--r--kaldi_io/src/kaldi/base/kaldi-math.h346
1 files changed, 0 insertions, 346 deletions
diff --git a/kaldi_io/src/kaldi/base/kaldi-math.h b/kaldi_io/src/kaldi/base/kaldi-math.h
deleted file mode 100644
index 4f60d00..0000000
--- a/kaldi_io/src/kaldi/base/kaldi-math.h
+++ /dev/null
@@ -1,346 +0,0 @@
-// base/kaldi-math.h
-
-// Copyright 2009-2011 Ondrej Glembek; Microsoft Corporation; Yanmin Qian;
-// Jan Silovsky; Saarland University
-//
-// See ../../COPYING for clarification regarding multiple authors
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
-// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
-// MERCHANTABLITY OR NON-INFRINGEMENT.
-// See the Apache 2 License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef KALDI_BASE_KALDI_MATH_H_
-#define KALDI_BASE_KALDI_MATH_H_ 1
-
-#ifdef _MSC_VER
-#include <float.h>
-#endif
-
-#include <cmath>
-#include <limits>
-#include <vector>
-
-#include "base/kaldi-types.h"
-#include "base/kaldi-common.h"
-
-
-#ifndef DBL_EPSILON
-#define DBL_EPSILON 2.2204460492503131e-16
-#endif
-#ifndef FLT_EPSILON
-#define FLT_EPSILON 1.19209290e-7f
-#endif
-
-#ifndef M_PI
-# define M_PI 3.1415926535897932384626433832795
-#endif
-
-#ifndef M_SQRT2
-# define M_SQRT2 1.4142135623730950488016887
-#endif
-
-
-#ifndef M_2PI
-# define M_2PI 6.283185307179586476925286766559005
-#endif
-
-#ifndef M_SQRT1_2
-# define M_SQRT1_2 0.7071067811865475244008443621048490
-#endif
-
-#ifndef M_LOG_2PI
-#define M_LOG_2PI 1.8378770664093454835606594728112
-#endif
-
-#ifndef M_LN2
-#define M_LN2 0.693147180559945309417232121458
-#endif
-
-#ifdef _MSC_VER
-# define KALDI_ISNAN _isnan
-# define KALDI_ISINF(x) (!_isnan(x) && _isnan(x-x))
-# define KALDI_ISFINITE _finite
-#else
-# define KALDI_ISNAN std::isnan
-# define KALDI_ISINF std::isinf
-# define KALDI_ISFINITE(x) std::isfinite(x)
-#endif
-#if !defined(KALDI_SQR)
-# define KALDI_SQR(x) ((x) * (x))
-#endif
-
-namespace kaldi {
-
-// -infinity
-const float kLogZeroFloat = -std::numeric_limits<float>::infinity();
-const double kLogZeroDouble = -std::numeric_limits<double>::infinity();
-const BaseFloat kLogZeroBaseFloat = -std::numeric_limits<BaseFloat>::infinity();
-
-// Returns a random integer between 0 and RAND_MAX, inclusive
-int Rand(struct RandomState* state=NULL);
-
-// State for thread-safe random number generator
-struct RandomState {
- RandomState();
- unsigned seed;
-};
-
-// Returns a random integer between min and max inclusive.
-int32 RandInt(int32 min, int32 max, struct RandomState* state=NULL);
-
-bool WithProb(BaseFloat prob, struct RandomState* state=NULL); // Returns true with probability "prob",
-// with 0 <= prob <= 1 [we check this].
-// Internally calls Rand(). This function is carefully implemented so
-// that it should work even if prob is very small.
-
-/// Returns a random number strictly between 0 and 1.
-inline float RandUniform(struct RandomState* state = NULL) {
- return static_cast<float>((Rand(state) + 1.0) / (RAND_MAX+2.0));
-}
-
-inline float RandGauss(struct RandomState* state = NULL) {
- return static_cast<float>(sqrtf (-2 * logf(RandUniform(state)))
- * cosf(2*M_PI*RandUniform(state)));
-}
-
-// Returns poisson-distributed random number. Uses Knuth's algorithm.
-// Take care: this takes time proportinal
-// to lambda. Faster algorithms exist but are more complex.
-int32 RandPoisson(float lambda, struct RandomState* state=NULL);
-
-// Returns a pair of gaussian random numbers. Uses Box-Muller transform
-void RandGauss2(float *a, float *b, RandomState *state = NULL);
-void RandGauss2(double *a, double *b, RandomState *state = NULL);
-
-// Also see Vector<float,double>::RandCategorical().
-
-// This is a randomized pruning mechanism that preserves expectations,
-// that we typically use to prune posteriors.
-template<class Float>
-inline Float RandPrune(Float post, BaseFloat prune_thresh, struct RandomState* state=NULL) {
- KALDI_ASSERT(prune_thresh >= 0.0);
- if (post == 0.0 || std::abs(post) >= prune_thresh)
- return post;
- return (post >= 0 ? 1.0 : -1.0) *
- (RandUniform(state) <= fabs(post)/prune_thresh ? prune_thresh : 0.0);
-}
-
-static const double kMinLogDiffDouble = std::log(DBL_EPSILON); // negative!
-static const float kMinLogDiffFloat = std::log(FLT_EPSILON); // negative!
-
-inline double LogAdd(double x, double y) {
- double diff;
- if (x < y) {
- diff = x - y;
- x = y;
- } else {
- diff = y - x;
- }
- // diff is negative. x is now the larger one.
-
- if (diff >= kMinLogDiffDouble) {
- double res;
-#ifdef _MSC_VER
- res = x + log(1.0 + exp(diff));
-#else
- res = x + log1p(exp(diff));
-#endif
- return res;
- } else {
- return x; // return the larger one.
- }
-}
-
-
-inline float LogAdd(float x, float y) {
- float diff;
- if (x < y) {
- diff = x - y;
- x = y;
- } else {
- diff = y - x;
- }
- // diff is negative. x is now the larger one.
-
- if (diff >= kMinLogDiffFloat) {
- float res;
-#ifdef _MSC_VER
- res = x + logf(1.0 + expf(diff));
-#else
- res = x + log1pf(expf(diff));
-#endif
- return res;
- } else {
- return x; // return the larger one.
- }
-}
-
-
-// returns exp(x) - exp(y).
-inline double LogSub(double x, double y) {
- if (y >= x) { // Throws exception if y>=x.
- if (y == x)
- return kLogZeroDouble;
- else
- KALDI_ERR << "Cannot subtract a larger from a smaller number.";
- }
-
- double diff = y - x; // Will be negative.
- double res = x + log(1.0 - exp(diff));
-
- // res might be NAN if diff ~0.0, and 1.0-exp(diff) == 0 to machine precision
- if (KALDI_ISNAN(res))
- return kLogZeroDouble;
- return res;
-}
-
-
-// returns exp(x) - exp(y).
-inline float LogSub(float x, float y) {
- if (y >= x) { // Throws exception if y>=x.
- if (y == x)
- return kLogZeroDouble;
- else
- KALDI_ERR << "Cannot subtract a larger from a smaller number.";
- }
-
- float diff = y - x; // Will be negative.
- float res = x + logf(1.0 - expf(diff));
-
- // res might be NAN if diff ~0.0, and 1.0-exp(diff) == 0 to machine precision
- if (KALDI_ISNAN(res))
- return kLogZeroFloat;
- return res;
-}
-
-/// return abs(a - b) <= relative_tolerance * (abs(a)+abs(b)).
-static inline bool ApproxEqual(float a, float b,
- float relative_tolerance = 0.001) {
- // a==b handles infinities.
- if (a==b) return true;
- float diff = std::abs(a-b);
- if (diff == std::numeric_limits<float>::infinity()
- || diff != diff) return false; // diff is +inf or nan.
- return (diff <= relative_tolerance*(std::abs(a)+std::abs(b)));
-}
-
-/// assert abs(a - b) <= relative_tolerance * (abs(a)+abs(b))
-static inline void AssertEqual(float a, float b,
- float relative_tolerance = 0.001) {
- // a==b handles infinities.
- KALDI_ASSERT(ApproxEqual(a, b, relative_tolerance));
-}
-
-
-// RoundUpToNearestPowerOfTwo does the obvious thing. It crashes if n <= 0.
-int32 RoundUpToNearestPowerOfTwo(int32 n);
-
-template<class I> I Gcd(I m, I n) {
- if (m == 0 || n == 0) {
- if (m == 0 && n == 0) { // gcd not defined, as all integers are divisors.
- KALDI_ERR << "Undefined GCD since m = 0, n = 0.";
- }
- return (m == 0 ? (n > 0 ? n : -n) : ( m > 0 ? m : -m));
- // return absolute value of whichever is nonzero
- }
- // could use compile-time assertion
- // but involves messing with complex template stuff.
- KALDI_ASSERT(std::numeric_limits<I>::is_integer);
- while (1) {
- m %= n;
- if (m == 0) return (n > 0 ? n : -n);
- n %= m;
- if (n == 0) return (m > 0 ? m : -m);
- }
-}
-
-/// Returns the least common multiple of two integers. Will
-/// crash unless the inputs are positive.
-template<class I> I Lcm(I m, I n) {
- KALDI_ASSERT(m > 0 && n > 0);
- I gcd = Gcd(m, n);
- return gcd * (m/gcd) * (n/gcd);
-}
-
-
-template<class I> void Factorize(I m, std::vector<I> *factors) {
- // Splits a number into its prime factors, in sorted order from
- // least to greatest, with duplication. A very inefficient
- // algorithm, which is mainly intended for use in the
- // mixed-radix FFT computation (where we assume most factors
- // are small).
- KALDI_ASSERT(factors != NULL);
- KALDI_ASSERT(m >= 1); // Doesn't work for zero or negative numbers.
- factors->clear();
- I small_factors[10] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
-
- // First try small factors.
- for (I i = 0; i < 10; i++) {
- if (m == 1) return; // We're done.
- while (m % small_factors[i] == 0) {
- m /= small_factors[i];
- factors->push_back(small_factors[i]);
- }
- }
- // Next try all odd numbers starting from 31.
- for (I j = 31;; j += 2) {
- if (m == 1) return;
- while (m % j == 0) {
- m /= j;
- factors->push_back(j);
- }
- }
-}
-
-inline double Hypot(double x, double y) { return hypot(x, y); }
-
-inline float Hypot(float x, float y) { return hypotf(x, y); }
-
-#if !defined(_MSC_VER) || (_MSC_VER >= 1800)
-inline double Log1p(double x) { return log1p(x); }
-
-inline float Log1p(float x) { return log1pf(x); }
-#else
-inline double Log1p(double x) {
- const double cutoff = 1.0e-08;
- if (x < cutoff)
- return x - 2 * x * x;
- else
- return log(1.0 + x);
-}
-
-inline float Log1p(float x) {
- const float cutoff = 1.0e-07;
- if (x < cutoff)
- return x - 2 * x * x;
- else
- return log(1.0 + x);
-}
-#endif
-
-inline double Exp(double x) { return exp(x); }
-
-#ifndef KALDI_NO_EXPF
-inline float Exp(float x) { return expf(x); }
-#else
-inline float Exp(float x) { return exp(x); }
-#endif
-
-inline double Log(double x) { return log(x); }
-
-inline float Log(float x) { return logf(x); }
-
-
-} // namespace kaldi
-
-
-#endif // KALDI_BASE_KALDI_MATH_H_