diff options
author | Determinant <[email protected]> | 2015-06-25 12:56:45 +0800 |
---|---|---|
committer | Determinant <[email protected]> | 2015-06-25 12:56:45 +0800 |
commit | a74183ddb4ab8383bfe214b3745eb8a0a99ee47a (patch) | |
tree | d5e69cf8c4c2db2e3a4722778352fc3c95953bb2 /htk_io/examples/tnet_preprocessing_example.lua | |
parent | b6301089cde20f4c825c7f5deaf179082aad63da (diff) |
let HTK I/O implementation be a single package
Diffstat (limited to 'htk_io/examples/tnet_preprocessing_example.lua')
-rw-r--r-- | htk_io/examples/tnet_preprocessing_example.lua | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/htk_io/examples/tnet_preprocessing_example.lua b/htk_io/examples/tnet_preprocessing_example.lua new file mode 100644 index 0000000..9e1c0ce --- /dev/null +++ b/htk_io/examples/tnet_preprocessing_example.lua @@ -0,0 +1,75 @@ +require 'libspeech' +frm_ext = 5 +gconf = {cumat_type = nerv.CuMatrixFloat, + batch_size = 158} +param_repo = nerv.ParamRepo({"global_transf.nerv"}) +sublayer_repo = nerv.LayerRepo( + { + ["nerv.BiasLayer"] = + { + blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}}, + blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}} + }, + ["nerv.WindowLayer"] = + { + wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}}, + wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}} + } + }, param_repo, gconf) + +layer_repo = nerv.LayerRepo( + { + ["nerv.DAGLayer"] = + { + main = {{}, { + dim_in = {429}, dim_out = {429}, + sub_layers = sublayer_repo, + connections = { + ["<input>[1]"] = "blayer1[1]", + ["blayer1[1]"] = "wlayer1[1]", + ["wlayer1[1]"] = "blayer2[1]", + ["blayer2[1]"] = "wlayer2[1]", + ["wlayer2[1]"] = "<output>[1]" + } + }} + } + }, param_repo, gconf) + +feat_repo = nerv.TNetFeatureRepo( + "/slfs1/users/mfy43/swb_ivec/train_bp.scp", + "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf", + frm_ext) +lab_repo = nerv.TNetLabelRepo( + "/slfs1/users/mfy43/swb_ivec/ref.mlf", + "map", + "/slfs1/users/mfy43/swb_ivec/dict", + "*/", + "lab") +feat_utter = feat_repo:cur_utter() + +-- print(feat_utter) +-- lab_utter = lab_repo:get_utter(feat_repo, feat_utter:nrow() - frm_ext * 2) +-- print(lab_utter) + +cf2 = nerv.ChunkFile("feat_256", "r") +input = cf2:read_chunk("input", gconf) + +step = frm_ext * 2 + 1 +expanded = nerv.CuMatrixFloat(feat_utter:nrow(), feat_utter:ncol() * step) +expanded:expand_frm(nerv.CuMatrixFloat.new_from_host(feat_utter), frm_ext) + +rearranged = expanded:create() +rearranged:rearrange_frm(expanded, step) + +output = {expanded:create()} +main = layer_repo:get_layer("main") +main:init() +main:propagate({rearranged}, output) + +for i = 0, 157 - 10 do + row_diff = input.trans[i] - output[1][i + 5] + for j = 0, row_diff:ncol() - 1 do + nerv.printf("%.8f ", row_diff[j]) + end + nerv.printf("\n") +end |