#if !defined(ATL_GAS_x8632) && !defined(ATL_GAS_x8664)
#error "This kernel requires gas x86 assembler!"
#endif
#ifndef Mstr /* Added by RCW to make multiline macros work */
#define Mstr2(m) # m
#define Mstr(m) Mstr2(m)
#endif
/* The mening of the defined macros is as follows:
* VECLEN: The length of a singleprecision vector register
* vec_add: Add to single precision vectors.
* vec_mul: Multiply to single precision vectors.
* vec_mov: Moves data around
* vec_mov1: Load one element in a vector and zero all other entries!
* vec_splat: Load one element relpicated in all positions in the vector.
* vec_load_apart: Load elements from different memory positions into a register.
* vec_sum: Sums a register.
* vec_store_one: Stores lowest element in vector to memory, no zero-extend!
* Meaning of suffixes is as follows:
* mr means memory to register
* rr means register to register
* rm means register to memory
* a means that instruction needs aligned data
* 1 means that the instructions only operates on the lowest element of the
* vector.
*
* The _1 instructions work under one important assumption: That you never mix
* them with regular instructions, e.g. loading into a register with a normal
* mov, and then using add_rr_1 will not work under 3dnow! since it is in
* reality a normal add. However, if using a mov_1 first, the upper part of
* the register will be zeroed, and it will therefore work. The _1 system is
* more robust under SSE, but other architectures might be implemented the
* same way as 3dnow!
*
* RCW: I added the following functionality for SSE only (note that vw may
* be overwritten with intermediate results, but is not used as input,
* and that all input array may be overwritten wt intermediate results.
* VL : vector length -1):
* vec_red(vd, vw) : vd[0] = sum(vd[0:VL])
* vec_red2(v1, v2, vw) : v1[0] = sum(v1[0:VL]); v1[1] = sum(v2[0:VL])
* vec_red4(v0, v1, v2, v3 vw1, vw2) :
* v0[0] = sum(v0[0:VL]); v0[1] = sum(v1[0:VL])
* if type = double:
* v2[0] = sum(v2[0:VL]); v2[1] = sum(v3[0:VL])
* else
* v0[2] = sum(v2[0:VL]); v0[3] = sum(v3[0:VL])
* vec_zero(vd) : vd[0:VL] = 0.0
*/
/* Things to try:
* Non-temporal stores
* Sequences of instructions instead of movups
*
*
*
*
*/
#define gen_vec_rr(op,reg1,reg2) \
__asm__ __volatile__ (#op " " #reg1 ", " #reg2 \
: /* nothing */ \
: /* nothing */)
#define w(p) p
#define nop() __asm__ __volatile__ ("nop")
#define rep() __asm__ __volatile__ ("rep")
#define align() __asm__ __volatile__ (".align 16")
#ifdef x87double
#define st0 %%st(0)
#define st1 %%st(1)
#define st2 %%st(2)
#define st3 %%st(3)
#define st4 %%st(4)
#define st5 %%st(5)
#define st6 %%st(6)
#define st7 %%st(7)
#define gen_stack_rt(op,reg) \
__asm__ __volatile__ (#op " " #reg \
: /* nothing */ \
: /* nothing */)
#define gen_stack_tr(op,reg) \
__asm__ __volatile__ (#op " %%st(0)," #reg \
: \
: )
#define gen_stack_rr(op,reg1,reg2) \
__asm__ __volatile__ (#op " " #reg1 ", " #reg2 \
: /* nothing */ \
: /* nothing */)
#define gen_stack_t(op) \
__asm__ __volatile__ (#op \
: /* nothing */ \
: /* nothing */)
#define gen_stack_tm(op,mem) \
__asm__ __volatile__ (#op " %0" \
: "=m" (((mem)[0])) \
: )
#define gen_stack_mt(op,mem) \
__asm__ __volatile__ (#op " %0" \
: \
: "m" (((mem)[0])))
#define stack_mov_mt_push(mem) gen_stack_mt(fldl,mem)
#define stack_add_tr_pop(reg) gen_stack_tr(faddp,reg)
#define stack_add_mt(mem) gen_stack_mt(faddl,mem)
#define stack_mul_tr(reg) gen_stack_tr(fmul,reg)
#define stack_mul_tr_pop(reg) gen_stack_tr(fmulp,reg)
#define stack_mul_mt(mem) gen_stack_mt(fmul,mem)
#define stack_mov_tm_pop(mem) gen_stack_tm(fstpl,mem)
#define stack_zero_push() gen_stack_t(fldz)
#endif /* x87double */
#ifdef SSE
/* Peculiarities of SSE: Alignment is good, but not mandatory. It is possible to
* load/store from misaligned adresses using movups at a cost of some cycles. Loading
* using mul/add must always be aligned. Alignment is 16 bytes.
* No muladd.
*/
#define gen_vec_mr(op,mem,reg) \
__asm__ __volatile__ (#op " %0, " #reg \
: /* nothing */ \
: "m" (((mem)[0])), "m" (((mem)[1])), "m" (((mem)[2])), "m" (((mem)[3])))
#define gen_vec_rm(op,reg,mem) \
__asm__ __volatile__ (#op " " #reg ", %0" \
: "=m" (((mem)[0])), "=m" (((mem)[1])), "=m" (((mem)[2])), "=m" (((mem)[3])) \
: /* nothing */ )
#define VECLEN 4
#define reg0 %%xmm0
#define reg1 %%xmm1
#define reg2 %%xmm2
#define reg3 %%xmm3
#define reg4 %%xmm4
#define reg5 %%xmm5
#define reg6 %%xmm6
#define reg7 %%xmm7
#ifdef ATL_GAS_x8664
#define reg8 %%xmm8
#define reg9 %%xmm9
#define reg10 %%xmm10
#define reg11 %%xmm11
#define reg12 %%xmm12
#define reg13 %%xmm13
#define reg14 %%xmm14
#define reg15 %%xmm15
#endif
#define vec_mov_mr(mem,reg) gen_vec_mr(movups,mem,reg)
#define vec_mov_rm(reg,mem) gen_vec_rm(movups,reg,mem)
#define vec_mov_mr_a(mem,reg) gen_vec_mr(movaps,mem,reg)
#define vec_mov_rm_a(reg,mem) gen_vec_rm(movaps,reg,mem)
#define vec_mov_rr(reg1,reg2) gen_vec_rr(movaps,reg1,reg2)
#define vec_add_mr_a(mem,reg) gen_vec_mr(addps,mem,reg)
#define vec_mul_mr_a(mem,reg) gen_vec_mr(mulps,mem,reg)
#define vec_add_rr(mem,reg) gen_vec_rr(addps,mem,reg)
#define vec_mul_rr(mem,reg) gen_vec_rr(mulps,mem,reg)
#define vec_mov_mr_1(mem,reg) gen_vec_mr(movss,mem,reg)
#define vec_mov_rm_1(reg,mem) gen_vec_rm(movss,reg,mem)
#define vec_mov_rr_1(reg1,reg2) gen_vec_rr(movss,reg1,reg2)
#define vec_add_mr_1(mem,reg) gen_vec_mr(addss,mem,reg)
#define vec_add_rr_1(reg1,reg2) gen_vec_rr(addss,reg1,reg2)
#define vec_mul_mr_1(mem,reg) gen_vec_mr(mulss,mem,reg)
#define vec_mul_rr_1(reg1,reg2) gen_vec_rr(mulss,reg1,reg2)
#define vec_unpack_low(reg1,reg2) gen_vec_rr(unpcklps,reg1,reg2)
#define vec_unpack_high(reg1,reg2) gen_vec_rr(unpckhps,reg1,reg2)
#define vec_shuffle(mode,reg1,reg2) vec_shuffle_wrap(mode,reg1,reg2)
#define vec_shuffle_wrap(mode,reg1,reg2) \
__asm__ __volatile__ ("shufps " #mode ", " #reg1 ", " #reg2 \
: /* nothing */\
: /* nothing */)
/* Hack! */
/* To use this instruction be sure that register 7 is not in use!!! */
/* It must be possible to reduce this sequence to only four instructions.
* please tell me how! */
#define vec_sum(reg) vec_sum_wrap(reg)
#define vec_sum_wrap(reg) \
__asm__ __volatile__ ("movhlps " #reg ", %%xmm7\n"\
"addps " #reg ", %%xmm7\n"\
"movaps %%xmm7, " #reg "\n"\
"shufps $1, " #reg ", %%xmm7\n"\
"addss %%xmm7, " #reg "\n"\
: /* nothing */\
: /* nothing */)
/* RCW: added to safely replace vec_sum (vec reduce), and use SSE3 when avail */
#define vec_zero(vd) __asm__ __volatile__("xorps " Mstr(vd) ", " Mstr(vd) ::)
#ifdef ATL_SSE3
#define vec_red(vr, vwrk) \
__asm__ __volatile__("haddps " Mstr(vr) ", " Mstr(vr) "\n"\
"haddps " Mstr(vr) ", " Mstr(vr) "\n" ::)
/*
* haddps v1 v0 # v0 = {v1cd, v1ab, v0cd, v0ab}
* haddps v0 v0 # v0 = {v1abcd, v0abcd, v1abcd, v0abcd}
*/
#define vec_red2(v0, v1, vwork) \
__asm__ __volatile__("haddps " Mstr(v1) ", " Mstr(v0) "\n"\
"haddps " Mstr(v0) ", " Mstr(v0) "\n" ::)
/*
* haddps v1, v0 # v0 = {v1cd,v1ab,v0cd,v0ab}
* haddps v3, v2 # v2 = {v3cd,v3ab,v2cd,v2ab}
* haddps v2, v0 # v0 = {v3abcd,v2abcd,v1abcd, v0abcd}
*/
#define vec_red4(v0, v1, v2, v3, w0, w1) \
__asm__ __volatile__("haddps " Mstr(v1) ", " Mstr(v0) "\n"\
"haddps " Mstr(v3) ", " Mstr(v2) "\n"\
"haddps " Mstr(v2) ", " Mstr(v0) "\n" ::)
#elif defined(ATL_SSE2)
#define vec_red(vr, vwrk) \
__asm__ __volatile__ ("pshufd $0xEE, " Mstr(vr) ", " Mstr(vwrk) "\n"\
"addps " Mstr(vwrk) ", " Mstr(vr) "\n"\
"pshufd $0xE5, " Mstr(vr) ", " Mstr(vwrk) "\n"\
"addss " Mstr(vwrk) ", " Mstr(vr) "\n"\
::)
#else
#define vec_red(vr, vwrk) \
__asm__ __volatile__ ("movhlps " Mstr(vr) ", " Mstr(vwrk) "\n"\
"addps " Mstr(vwrk) ", " Mstr(vr) "\n"\
"movaps " Mstr(vr) ", " Mstr(vwrk) "\n"\
"shufps $0xE5, " Mstr(vr) ", " Mstr(vr) "\n"\
"addss " Mstr(vwrk) ", " Mstr(vr) "\n"\
::)
#endif
#ifndef ATL_SSE3 /* codes that are the same for SSE2 and SSE1 */
/*
# v0 = {v0d,v0c,v0b,v0a}
# v1 = {v1d,v1c,v1b,v1a}
movaps v0, vw # vw = {v0d,v0c,v0b,v0a}
unpacklps v1, v0 # v0 = {v1b,v0b,v1a,v0a}
unpackhps v1, vw # vw = {v1d,v0d,v1c,v0c}
addps vw, v0 # v0 = {v1bd,v0bd,v1ac,v0ac}
movhlps v0, vw # vw = {X , X,v1bd,v0bd}
addps vw, v0 # v0 = {X , X,v1abcd,v0abcd}
*/
#define vec_red2(v0, v1, vw) \
__asm__ __volatile__ ("movaps " Mstr(v0) ", " Mstr(vw) "\n"\
"unpcklps " Mstr(v1) ", " Mstr(v0) "\n"\
"unpckhps " Mstr(v1) ", " Mstr(vw) "\n"\
"addps " Mstr(vw) ", " Mstr(v0) "\n"\
"movhlps " Mstr(v0) ", " Mstr(vw) "\n"\
"addps " Mstr(vw) ", " Mstr(v0) "\n"\
::)
/*
* movaps v0, w0 # w0 = {v0d, v0c, v0b, v0a}
* unpcklps v1, v0 # v0 = {v1b, v0b, v1a, v0a}
* movaps v2, w1 # w1 = {v2d, v2c, v2b, v2a}
* unpckhps v1, w0 # w0 = {v1d, v0d, v1c, v0c}
* unpcklps v3, v2 # v2 = {v3b, v2b, v3a, v2a}
* addps w0, v0 # v0 = {v1bd, v0bd, v1ac, v0ac}
* unpckhps v3, w1 # w1 = {v3d, v2d, v3c, v2c}
* movaps v0, w0 # w0 = {v1bd, v0bd, v1ac, v0ac}
* addps w1, v2 # v2 = {v3bd, v2bd, v3ac, v2ac}
* shufps $0x44,v2,v0 # v0 = {v3ac, v2ac, v1ac, v0ac}
* shufps $0xEE,v2,w0 # w0 = {v3bd, v2bd, v1bd, v0bd}
* addps w0, v0 # v0 = {v3abcd, v2abcd, v1abcd, v0abcd}
*/
#define vec_red4(v0, v1, v2, v3, w0, w1) \
__asm__ __volatile__ ("movaps " Mstr(v0) ", " Mstr(w0) "\n"\
"unpcklps " Mstr(v1) ", " Mstr(v0) "\n"\
"movaps " Mstr(v2) ", " Mstr(w1) "\n"\
"unpckhps " Mstr(v1) ", " Mstr(w0) "\n"\
"unpcklps " Mstr(v3) ", " Mstr(v2) "\n"\
"addps " Mstr(w0) ", " Mstr(v0) "\n"\
"unpckhps " Mstr(v3) ", " Mstr(w1) "\n"\
"movaps " Mstr(v0) ", " Mstr(w0) "\n"\
"addps " Mstr(w1) ", " Mstr(v2) "\n"\
"shufps $0x44, " Mstr(v2) ", " Mstr(v0) "\n"\
"shufps $0xEE, " Mstr(v2) ", " Mstr(w0) "\n"\
"addps " Mstr(w0) ", " Mstr(v0) "\n"\
::)
#endif
#define vec_splat(mem,reg) vec_splat_wrap(mem,reg)
#define vec_splat_wrap(mem,reg) \
__asm__ __volatile__ ("movss %0, " #reg "\n"\
"unpcklps " #reg ", " #reg "\n"\
"movlhps " #reg ", " #reg "\n"\
: /* nothing */ \
: "m" ((mem)[0]))
/* This instruction sequence appears courtesy of Camm Maguire. */
#define vec_sum_full(reg0,reg1,reg2,reg3,regout,empty0,empty1) vec_sum_full_wrap(reg0,reg1,reg2,reg3,regout,empty0,empty1)
#define vec_sum_full_wrap(reg0,reg1,reg2,reg3,regout,empty0,empty1) \
__asm__ __volatile__ ("movaps " #reg0 "," #empty0 "\n"\
"unpcklps " #reg1 "," #reg0 "\n"\
"movaps " #reg2 "," #empty1 "\n"\
"unpckhps " #reg1 "," #empty0 "\n"\
"unpcklps " #reg3 "," #reg2 "\n"\
"addps " #empty0 "," #reg0 "\n"\
"unpckhps " #reg3 "," #empty1 "\n"\
"movaps " #reg0 "," #regout "\n"\
"addps " #empty1 "," #reg2 "\n"\
"shufps $0x44," #reg2 "," #reg0 "\n"\
"shufps $0xee," #reg2 "," #regout "\n"\
"addps " #reg0 "," #regout "\n"\
: /* nothing */ \
: /* nothing */)
typedef float vector[VECLEN];
#endif /* end ifdef SSE */
#ifdef SSE2
/* Peculiarities of SSE: Alignment is good, but not mandatory. It is possible to
* load/store from misaligned adresses using movups at a cost of some cycles. Loading
* using mul/add must always be aligned. Alignment is 16 bytes.
* No muladd.
*/
#define gen_vec_mr(op,mem,reg) \
__asm__ __volatile__ (#op " %0, " #reg \
: /* nothing */ \
: "m" (((mem)[0])), "m" (((mem)[1])))
#define gen_vec_rm(op,reg,mem) \
__asm__ __volatile__ (#op " " #reg ", %0" \
: "=m" (((mem)[0])), "=m" (((mem)[1])) \
: /* nothing */ )
#define VECLEN 2
#define reg0 %%xmm0
#define reg1 %%xmm1
#define reg2 %%xmm2
#define reg3 %%xmm3
#define reg4 %%xmm4
#define reg5 %%xmm5
#define reg6 %%xmm6
#define reg7 %%xmm7
#ifdef ATL_GAS_x8664
#define reg8 %%xmm8
#define reg9 %%xmm9
#define reg10 %%xmm10
#define reg11 %%xmm11
#define reg12 %%xmm12
#define reg13 %%xmm13
#define reg14 %%xmm14
#define reg15 %%xmm15
#endif
#define vec_mov_mr(mem,reg) gen_vec_mr(movupd,mem,reg)
#define vec_mov_rm(reg,mem) gen_vec_rm(movupd,reg,mem)
#define vec_mov_mr_a(mem,reg) gen_vec_mr(movapd,mem,reg)
#define vec_mov_rm_a(reg,mem) gen_vec_rm(movapd,reg,mem)
#define vec_mov_rr(reg1,reg2) gen_vec_rr(movapd,reg1,reg2)
#define vec_add_mr_a(mem,reg) gen_vec_mr(addpd,mem,reg)
#define vec_mul_mr_a(mem,reg) gen_vec_mr(mulpd,mem,reg)
#define vec_add_rr(mem,reg) gen_vec_rr(addpd,mem,reg)
#define vec_mul_rr(mem,reg) gen_vec_rr(mulpd,mem,reg)
#define vec_mov_mr_1(mem,reg) gen_vec_mr(movsd,mem,reg)
#define vec_mov_rm_1(reg,mem) gen_vec_rm(movsd,reg,mem)
#define vec_mov_rr_1(reg1,reg2) gen_vec_rr(movsd,reg1,reg2)
#define vec_add_mr_1(mem,reg) gen_vec_mr(addsd,mem,reg)
#define vec_add_rr_1(reg1,reg2) gen_vec_rr(addsd,reg1,reg2)
#define vec_mul_mr_1(mem,reg) gen_vec_mr(mulsd,mem,reg)
#define vec_mul_rr_1(reg1,reg2) gen_vec_rr(mulsd,reg1,reg2)
#define vec_splat(mem,reg) vec_splat_wrap(mem,reg)
#define vec_splat_wrap(mem,reg) \
__asm__ __volatile__ ("movsd %0, " #reg "\n"\
"unpcklpd " #reg ", " #reg \
: /* nothing */ \
: "m" ((mem)[0]))
/* Hack! */
/* To use this instruction be sure that register 7 is not in use!!! */
#define vec_sum(reg) vec_sum_wrap(reg)
#define vec_sum_wrap(reg) \
__asm__ __volatile__ ("movhlps " #reg ", %%xmm7\n"\
"addpd %%xmm7, " #reg "\n"\
: /* nothing */\
: /* nothing */)
/*
* Added by RCW to improve performance and avoid xmm7 hack (replace vec_sum)
*/
#define vec_zero(vd) __asm__ __volatile__("xorps " Mstr(vd) ", " Mstr(vd) ::)
#ifdef ATL_SSE3
#define vec_red(vr, vwrk) \
__asm__ __volatile__("haddpd " Mstr(vr) ", " Mstr(vr) "\n" ::)
#define vec_red2(v0, v1, vw) \
__asm__ __volatile__("haddpd " Mstr(v1) ", " Mstr(v0) "\n" ::)
#define vec_red4(v0, v1, v2, v3, w0, w1) \
__asm__ __volatile__("haddpd " Mstr(v1) ", " Mstr(v0) "\n"\
"haddpd " Mstr(v3) ", " Mstr(v2) "\n"\
::)
#else
#define vec_red(vr, vwrk) \
__asm__ __volatile__ ("pshufd $0xEE, " Mstr(vr) ", " Mstr(vwrk) "\n"\
"addsd " Mstr(vwrk) ", " Mstr(vr) "\n" ::)
/*
* movapd v0, vw # vw = {v0b, v0a}
* unpcklpd v1,v0 # v0 = {v1a, v0a}
* unpckhpd v1, vw # vw = {v1b, v0b}
* addpd vw, v0 # v0 = {v1ab,v0ab}
*/
#define vec_red2(v0, v1, vw) \
__asm__ __volatile__("movapd " Mstr(v0) ", " Mstr(vw) "\n"\
"unpcklpd " Mstr(v1) ", " Mstr(v0) "\n"\
"unpckhpd " Mstr(v1) ", " Mstr(vw) "\n"\
"addpd " Mstr(vw) ", " Mstr(v0) "\n"\
::)
/*
* movapd v0, w0 # w0 = {v0b, v0a}
* movapd v2, w1 # w1 = {v2b, v2a}
* unpcklpd v1, v0 # v0 = {v1a, v0a}
* unpcklpd v3, v2 # v2 = {v3a, v2a}
* unpckhpd v1, w0 # w0 = {v1b, v0b}
* unpckhpd v3, w1 # w1 = {v3b, v2b}
* addpd w0, v0 # v0 = {v1ab, v0ab}
* addpd w1, v2 # v2 = {v3ab, v2ab}
*/
#define vec_red4(v0, v1, v2, v3, w0, w1) \
__asm__ __volatile__("movapd " Mstr(v0) ", " Mstr(w0) "\n"\
"movapd " Mstr(v2) ", " Mstr(w1) "\n"\
"unpcklpd " Mstr(v1) ", " Mstr(v0) "\n"\
"unpcklpd " Mstr(v3) ", " Mstr(v2) "\n"\
"unpckhpd " Mstr(v1) ", " Mstr(w0) "\n"\
"unpckhpd " Mstr(v3) ", " Mstr(w1) "\n"\
"addpd " Mstr(w0) ", " Mstr(v0) "\n"\
"addpd " Mstr(w1) ", " Mstr(v2) "\n"\
::)
#endif
#define vec_sum_full(reg1,reg2,empty1) vec_sum_full_wrap(reg1,reg2,empty1)
#define vec_sum_full_wrap(reg1,reg2,empty1) \
__asm__ __volatile__ ("movhlps " #reg2 ", " #empty1 "\n"\
"movlhps " #reg2 ", " #empty1 "\n"\
"addpd " #empty1 ", " #reg1 "\n"\
: /* nothing */\
: /* nothing */)
typedef double vector[VECLEN];
#endif /* end ifdef SSE2 */
#ifdef THREEDNOW
/* Peculiarities of 3DNOW. Alignment is not an issue,
* all alignments are legal, however alignment gives a speed increase.
* The vec_acc instruction can be used to sum to registers at once more efficiently
* than a series of vec_sum and vec_store_one
* No muladd.
*/
#define gen_vec_mr(op,mem,reg) \
__asm__ __volatile__ (#op " %0, " #reg \
: /* nothing */ \
: "m" (((mem)[0])), "m" (((mem)[1])))
#define gen_vec_rm(op,reg,mem) \
__asm__ __volatile__ (#op " " #reg ", %0" \
: "=m" (((mem)[0])), "=m" (((mem)[1])) \
: /* nothing */ )
#define VECLEN 2
#define reg0 %%mm0
#define reg1 %%mm1
#define reg2 %%mm2
#define reg3 %%mm3
#define reg4 %%mm4
#define reg5 %%mm5
#define reg6 %%mm6
#define reg7 %%mm7
#define vec_add_mr(mem,reg) gen_vec_mr(pfadd,mem,reg)
#define vec_mul_mr(mem,reg) gen_vec_mr(pfmul,mem,reg)
#define vec_mov_mr(mem,reg) gen_vec_mr(movq,mem,reg)
#define vec_mov_rm(reg,mem) gen_vec_rm(movq,reg,mem)
#define vec_add_rr(reg1,reg2) gen_vec_rr(pfadd,reg1,reg2)
#define vec_mul_rr(reg1,reg2) gen_vec_rr(pfmul,reg1,reg2)
#define vec_acc_rr(reg1,reg2) gen_vec_rr(pfacc,reg1,reg2)
#define vec_mov_rr(reg1,reg2) gen_vec_rr(movq,reg1,reg2)
#define vec_sum(reg) gen_vec_rr(pfacc,reg,reg)
#define vec_sum_full(reg1,reg2) gen_vec_rr(pfacc,reg1,reg2)
#define vec_mov_mr_1(mem,reg) gen_vec_mr(movd,mem,reg)
#define vec_mov_rm_1(reg,mem) gen_vec_rm(movd,reg,mem)
#define vec_mov_rr_1(reg1,reg2) gen_vec_rr(movd,reg1,reg2)
#define vec_add_rr_1(reg1,reg2) gen_vec_rr(pfadd,reg1,reg2)
#define vec_mul_rr_1(reg1,reg2) gen_vec_rr(pfmul,reg1,reg2)
#define vec_splat(mem,reg) vec_splat_wrap(mem,reg)
#define vec_splat_wrap(mem,reg) \
__asm__ __volatile__ ("movd %0, " #reg "\n"\
"punpckldq " #reg ", " #reg \
: /* nothing */ \
: "m" ((mem)[0]))
#define vec_load_apart(mem1,mem2,reg) vec_load_apart_wrap(mem1,mem2,reg)
#define vec_load_apart_wrap(mem1,mem2,reg) \
__asm__ __volatile__ ("movd %0, " #reg "\n"\
"punpckldq %1, " #reg \
: /* nothing */ \
: "m" ((mem1)[0]), "m" (((mem2)[0])))
#define vec_zero(reg) gen_vec_rr(pxor,reg,reg)
#define vec_enter() __asm__ __volatile__ ("femms")
#define vec_exit() __asm__ __volatile__ ("femms")
#define align() __asm__ __volatile__ (".align 16")
typedef float vector[VECLEN];
#endif
#ifdef ALTIVEC
#define VECLEN 4
#define reg0 %%vr0
#define reg1 %%vr1
#define reg2 %%vr2
#define reg3 %%vr3
#define reg4 %%vr4
#define reg5 %%vr5
#define reg6 %%vr6
#define reg7 %%vr7
#define reg8 %%vr8
#define reg9 %%vr9
#define reg10 %%vr10
#define reg11 %%vr11
#define reg12 %%vr12
#define reg13 %%vr13
#define reg14 %%vr14
#define reg15 %%vr15
#define reg16 %%vr16
#define reg17 %%vr17
#define reg18 %%vr18
#define reg19 %%vr19
#define reg20 %%vr20
#define reg21 %%vr21
#define reg22 %%vr22
#define reg23 %%vr23
#define reg24 %%vr24
#define reg25 %%vr25
#define reg26 %%vr26
#define reg27 %%vr27
#define reg28 %%vr28
#define reg29 %%vr29
#define reg30 %%vr30
#define reg31 %%vr31
#define gen_vec_mr(op,mem,reg) \
__asm__ __volatile__ (#op " %0, " #reg \
: /* nothing */ \
: "m" (((mem)[0])), "m" (((mem)[1])), "m" (((mem)[2])), "m" (((mem)[3])))
#define gen_vec_rm(op,reg,mem) \
__asm__ __volatile__ (#op " " #reg ", %0" \
: "=m" (((mem)[0])), "=m" (((mem)[1])), "=m" (((mem)[2])), "=m" (((mem)[3])) \
: /* nothing */ )
#define gen_alti3(op,reg1,reg2,regout) \
__asm__ __volatile__ (#op " " #reg1 ", " #reg2 ", " #regout \
: /* nothing */ \
: /* nothing */)
#define gen_alti_muladd(op,reg1,reg2,regout) \
__asm__ __volatile__ (#op " " #reg1 ", " #reg2 ", " #regout ", " #regout \
: /* nothing */ \
: /* nothing */)
#define vec_mov_mr_a(mem,reg) gen_vec_mr(lvx,mem,reg)
#define vec_mov_rm_a(reg,mem) gen_vec_rm(svx,reg,mem)
#define vec_muladd(reg1,reg2,regout) gen_alti3(vmaddfp,reg1,reg2,regout)
#define vec_zero(reg) gen_alti3(vxor,reg,reg,reg)
typedef float vector[VECLEN];
#endif
#ifdef ALTIVEC_C
/* These macros have been written by, or greatly inspired by,
* Nicholas A. Coult . Thanks.
*/
/* assumes that last four registers are not in use! */
#define transpose(x0,x1,x2,x3) \
reg28 = vec_mergeh(x0,x2); \
reg29 = vec_mergeh(x1,x3); \
reg30 = vec_mergel(x0,x2); \
reg31 = vec_mergel(x1,x3); \
x0 = vec_mergeh(reg28,reg29); \
x1 = vec_mergel(reg28,reg29); \
x2 = vec_mergeh(reg30,reg31); \
x3 = vec_mergel(reg30,reg31)
#define vec_mov_rm(v, where) \
low = vec_ld(0, (where)); \
high = vec_ld(16, (where)); \
p_vector = vec_lvsr(0, (int *)(where)); \
mask = vec_perm((vector unsigned char)(0), (vector unsigned char)(-1), p_vector); \
v = vec_perm(v, v, p_vector); \
low = vec_sel(low, v, mask); \
high = vec_sel(v, high, mask); \
vec_st(low, 0, (where)); \
vec_st(high, 16, (where))
#define vec_mov_mr_a(mem,reg) reg = vec_ld(0, mem)
#define vec_mov_mr(u,v) \
p_vector = (vector unsigned char)vec_lvsl(0, (int*)(v)); \
low = (vector unsigned char)vec_ld(0, (v)); \
high = (vector unsigned char)vec_ld(16, (v)); \
u=(vector float)vec_perm(low, high, p_vector)
#define vec_muladd(reg1,reg2,regout) regout = vec_madd(reg1,reg2,regout)
#define vec_add_rr(reg1,reg2) reg2 = vec_add(reg1,reg2)
#define vec_zero(reg) reg = vec_xor(reg,reg)
#define vec_sum_full(reg0,reg1,reg2,reg3,regout,empty0,empty1) \
transpose(reg0, reg1,reg2,reg3,regout,empty0,empty1); \
empty0 = vec_add(reg0,reg1); \
empty1 = vec_add(reg2,reg3); \
regout = vec_add(empty0,empty1)
#endif /* ALTIVEC_C */