// matrix/jama-eig.h
// Copyright 2009-2011 Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
// This file consists of a port and modification of materials from
// JAMA: A Java Matrix Package
// under the following notice: This software is a cooperative product of
// The MathWorks and the National Institute of Standards and Technology (NIST)
// which has been released to the public. This notice and the original code are
// available at http://math.nist.gov/javanumerics/jama/domain.notice
#ifndef KALDI_MATRIX_JAMA_EIG_H_
#define KALDI_MATRIX_JAMA_EIG_H_ 1
#include "matrix/kaldi-matrix.h"
namespace kaldi {
// This class is not to be used externally. See the Eig function in the Matrix
// class in kaldi-matrix.h. This is the external interface.
template<typename Real> class EigenvalueDecomposition {
// This class is based on the EigenvalueDecomposition class from the JAMA
// library (version 1.0.2).
public:
EigenvalueDecomposition(const MatrixBase<Real> &A);
~EigenvalueDecomposition(); // free memory.
void GetV(MatrixBase<Real> *V_out) { // V is what we call P externally; it's the matrix of
// eigenvectors.
KALDI_ASSERT(V_out->NumRows() == static_cast<MatrixIndexT>(n_)
&& V_out->NumCols() == static_cast<MatrixIndexT>(n_));
for (int i = 0; i < n_; i++)
for (int j = 0; j < n_; j++)
(*V_out)(i, j) = V(i, j); // V(i, j) is member function.
}
void GetRealEigenvalues(VectorBase<Real> *r_out) {
// returns real part of eigenvalues.
KALDI_ASSERT(r_out->Dim() == static_cast<MatrixIndexT>(n_));
for (int i = 0; i < n_; i++)
(*r_out)(i) = d_[i];
}
void GetImagEigenvalues(VectorBase<Real> *i_out) {
// returns imaginary part of eigenvalues.
KALDI_ASSERT(i_out->Dim() == static_cast<MatrixIndexT>(n_));
for (int i = 0; i < n_; i++)
(*i_out)(i) = e_[i];
}
private:
inline Real &H(int r, int c) { return H_[r*n_ + c]; }
inline Real &V(int r, int c) { return V_[r*n_ + c]; }
// complex division
inline static void cdiv(Real xr, Real xi, Real yr, Real yi, Real *cdivr, Real *cdivi) {
Real r, d;
if (std::abs(yr) > std::abs(yi)) {
r = yi/yr;
d = yr + r*yi;
*cdivr = (xr + r*xi)/d;
*cdivi = (xi - r*xr)/d;
} else {
r = yr/yi;
d = yi + r*yr;
*cdivr = (r*xr + xi)/d;
*cdivi = (r*xi - xr)/d;
}
}
// Nonsymmetric reduction from Hessenberg to real Schur form.
void Hqr2 ();
int n_; // matrix dimension.
Real *d_, *e_; // real and imaginary parts of eigenvalues.
Real *V_; // the eigenvectors (P in our external notation)
Real *H_; // the nonsymmetric Hessenberg form.
Real *ort_; // working storage for nonsymmetric algorithm.
// Symmetric Householder reduction to tridiagonal form.
void Tred2 ();
// Symmetric tridiagonal QL algorithm.
void Tql2 ();
// Nonsymmetric reduction to Hessenberg form.
void Orthes ();
};
template class EigenvalueDecomposition<float>; // force instantiation.
template class EigenvalueDecomposition<double>; // force instantiation.
template<typename Real> void EigenvalueDecomposition<Real>::Tred2() {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int j = 0; j < n_; j++) {
d_[j] = V(n_-1, j);
}
// Householder reduction to tridiagonal form.
for (int i = n_-1; i > 0; i--) {
// Scale to avoid under/overflow.
Real scale = 0.0;
Real h = 0.0;
for (int k = 0; k < i; k++) {
scale = scale + std::abs(d_[k]);
}
if (scale == 0.0) {
e_[i] = d_[i-1];
for (int j = 0; j < i; j++) {
d_[j] = V(i-1, j);
V(i, j) = 0.0;
V(j, i) = 0.0;
}
} else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d_[k] /= scale;
h += d_[k] * d_[k];
}
Real f = d_[i-1];
Real g = std::sqrt(h);
if (f > 0) {
g = -g;
}
e_[i] = scale * g;
h = h - f * g;
d_[i-1] = f - g;
for (int j = 0; j < i; j++) {
e_[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++) {
f = d_[j];
V(j, i) = f;
g =e_[j] + V(j, j) * f;
for (int k = j+1; k <= i-1; k++) {
g += V(k, j) * d_[k];
e_[k] += V(k, j) * f;
}
e_[j] = g;
}
f = 0.0;
for (int j = 0; j < i; j++) {
e_[j] /= h;
f += e_[j] * d_[j];
}
Real hh = f / (h + h);
for (int j = 0; j < i; j++) {
e_[j] -= hh * d_[j];
}
for (int j = 0; j < i; j++) {
f = d_[j];
g = e_[j];
for (int k = j; k <= i-1; k++) {
V(k, j) -= (f * e_[k] + g * d_[k]);
}
d_[j] = V(i-1, j);
V(i, j) = 0.0;
}
}
d_[i] = h;
}
// Accumulate transformations.
for (int i = 0; i < n_-1; i++) {
V(n_-1, i) = V(i, i);
V(i, i) = 1.0;
Real h = d_[i+1];
if (h != 0.0) {
for (int k = 0; k <= i; k++) {
d_[k] = V(k, i+1) / h;
}
for (int j = 0; j <= i; j++) {
Real g = 0.0;
for (int k = 0; k <= i; k++) {
g += V(k, i+1) * V(k, j);
}
for (int k = 0; k <= i; k++) {
V(k, j) -= g * d_[k];
}
}
}
for (int k = 0; k <= i; k++) {
V(k, i+1) = 0.0;
}
}
for (int j = 0; j < n_; j++) {
d_[j] = V(n_-1, j);
V(n_-1, j) = 0.0;
}
V(n_-1, n_-1) = 1.0;
e_[0] = 0.0;
}
template<typename Real> void EigenvalueDecomposition<Real>::Tql2() {
// This is derived from the Algol procedures tql2, by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int i = 1; i < n_; i++) {
e_[i-1] = e_[i];
}
e_[n_-1] = 0.0;
Real f = 0.0;
Real tst1 = 0.0;
Real eps = std::numeric_limits<Real>::epsilon();
for (int l = 0; l < n_; l++) {
// Find small subdiagonal element
tst1 = std::max(tst1, std::abs(d_[l]) + std::abs(e_[l]));
int m = l;
while (m < n_) {
if (std::abs(e_[m]) <= eps*tst1) {
break;
}
m++;
}
// If m == l, d_[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
Real g = d_[l];
Real p = (d_[l+1] - g) / (2.0 *e_[l]);
Real r = Hypot(p, static_cast<Real>(1.0)); // This is a Kaldi version of hypot that works with templates.
if (p < 0) {
r = -r;
}
d_[l] =e_[l] / (p + r);
d_[l+1] =e_[l] * (p + r);
Real dl1 = d_[l+1];
Real h = g - d_[l];
for (int i = l+2; i < n_; i++) {
d_[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d_[m];
Real c = 1.0;
Real c2 = c;
Real c3 = c;
Real el1 =e_[l+1];
Real s = 0.0;
Real s2 = 0.0;
for (int i = m-1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c *e_[i];
h = c * p;
r = Hypot(p, e_[i]); // This is a Kaldi version of Hypot that works with templates.
e_[i+1] = s * r;
s =e_[i] / r;
c = p / r;
p = c * d_[i] - s * g;
d_[i+1] = h + s * (c * g + s * d_[i]);
// Accumulate transformation.
for (int k = 0; k < n_; k++) {
h = V(k, i+1);
V(k, i+1) = s * V(k, i) + c * h;
V(k, i) = c * V(k, i) - s * h;
}
}
p = -s * s2 * c3 * el1 *e_[l] / dl1;
e_[l] = s * p;
d_[l] = c * p;
// Check for convergence.
} while (std::abs(e_[l]) > eps*tst1);
}
d_[l] = d_[l] + f;
e_[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n_-1; i++) {
int k = i;
Real p = d_[i];
for (int j = i+1; j < n_; j++) {
if (d_[j] < p) {
k = j;
p = d_[j];
}
}
if (k != i) {
d_[k] = d_[i];
d_[i] = p;
for (int j = 0; j < n_; j++) {
p = V(j, i);
V(j, i) = V(j, k);
V(j, k) = p;
}
}
}
}
template<typename Real>
void EigenvalueDecomposition<Real>::Orthes() {
// This is derived from the Algol procedures orthes and ortran,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutines in EISPACK.
int low = 0;
int high = n_-1;
for (int m = low+1; m <= high-1; m++) {
// Scale column.
Real scale = 0.0;
for (int i = m; i <= high; i++) {
scale = scale + std::abs(H(i, m-1));
}
if (scale != 0.0) {
// Compute Householder transformation.
Real h = 0.0;
for (int i = high; i >= m; i--) {
ort_[i] = H(i, m-1)/scale;
h += ort_[i] * ort_[i];
}
Real g = std::sqrt(h);
if (ort_[m] > 0) {
g = -g;
}
h = h - ort_[m] * g;
ort_[m] = ort_[m] - g;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for (int j = m; j < n_; j++) {
Real f = 0.0;
for (int i = high; i >= m; i--) {
f += ort_[i]*H(i, j);
}
f = f/h;
for (int i = m; i <= high; i++) {
H(i, j) -= f*ort_[i];
}
}
for (int i = 0; i <= high; i++) {
Real f = 0.0;
for (int j = high; j >= m; j--) {
f += ort_[j]*H(i, j);
}
f = f/h;
for (int j = m; j <= high; j++) {
H(i, j) -= f*ort_[j];
}
}
ort_[m] = scale*ort_[m];
H(m, m-1) = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
for (int i = 0; i < n_; i++) {
for (int j = 0; j < n_; j++) {
V(i, j) = (i == j ? 1.0 : 0.0);
}
}
for (int m = high-1; m >= low+1; m--) {
if (H(m, m-1) != 0.0) {
for (int i = m+1; i <= high; i++) {
ort_[i] = H(i, m-1);
}
for (int j = m; j <= high; j++) {
Real g = 0.0;
for (int i = m; i <= high; i++) {
g += ort_[i] * V(i, j);
}
// Double division avoids possible underflow
g = (g / ort_[m]) / H(m, m-1);
for (int i = m; i <= high; i++) {
V(i, j) += g * ort_[i];
}
}
}
}
}
template<typename Real> void EigenvalueDecomposition<Real>::Hqr2() {
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
int nn = n_;
int n = nn-1;
int low = 0;
int high = nn-1;
Real eps = std::numeric_limits<Real>::epsilon();
Real exshift = 0.0;
Real p = 0, q = 0, r = 0, s = 0, z=0, t, w, x, y;
// Store roots isolated by balanc and compute matrix norm
Real norm = 0.0;
for (int i = 0; i < nn; i++) {
if (i < low || i > high) {
d_[i] = H(i, i);
e_[i] = 0.0;
}
for (int j = std::max(i-1, 0); j < nn; j++) {
norm = norm + std::abs(H(i, j));
}
}
// Outer loop over eigenvalue index
int iter = 0;
while (n >= low) {
// Look for single small sub-diagonal element
int l = n;
while (l > low) {
s = std::abs(H(l-1, l-1)) + std::abs(H(l, l));
if (s == 0.0) {
s = norm;
}
if (std::abs(H(l, l-1)) < eps * s) {
break;
}
l--;
}
// Check for convergence
// One root found
if (l == n) {
H(n, n) = H(n, n) + exshift;
d_[n] = H(n, n);
e_[n] = 0.0;
n--;
iter = 0;
// Two roots found
} else if (l == n-1) {
w = H(n, n-1) * H(n-1, n);
p = (H(n-1, n-1) - H(n, n)) / 2.0;
q = p * p + w;
z = std::sqrt(std::abs(q));
H(n, n) = H(n, n) + exshift;
H(n-1, n-1) = H(n-1, n-1) + exshift;
x = H(n, n);
// Real pair
if (q >= 0) {
if (p >= 0) {
z = p + z;
} else {
z = p - z;
}
d_[n-1] = x + z;
d_[n] = d_[n-1];
if (z != 0.0) {
d_[n] = x - w / z;
}
e_[n-1] = 0.0;
e_[n] = 0.0;
x = H(n, n-1);
s = std::abs(x) + std::abs(z);
p = x / s;
q = z / s;
r = std::sqrt(p * p+q * q);
p = p / r;
q = q / r;
// Row modification
for (int j = n-1; j < nn; j++) {
z = H(n-1, j);
H(n-1, j) = q * z + p * H(n, j);
H(n, j) = q * H(n, j) - p * z;
}
// Column modification
for (int i = 0; i <= n; i++) {
z = H(i, n-1);
H(i, n-1) = q * z + p * H(i, n);
H(i, n) = q * H(i, n) - p * z;
}
// Accumulate transformations
for (int i = low; i <= high; i++) {
z = V(i, n-1);
V(i, n-1) = q * z + p * V(i, n);
V(i, n) = q * V(i, n) - p * z;
}
// Complex pair
} else {
d_[n-1] = x + p;
d_[n] = x + p;
e_[n-1] = z;
e_[n] = -z;
}
n = n - 2;
iter = 0;
// No convergence yet
} else {
// Form shift
x = H(n, n);
y = 0.0;
w = 0.0;
if (l < n) {
y = H(n-1, n-1);
w = H(n, n-1) * H(n-1, n);
}
// Wilkinson's original ad hoc shift
if (iter == 10) {
exshift += x;
for (int i = low; i <= n; i++) {
H(i, i) -= x;
}
s = std::abs(H(n, n-1)) + std::abs(H(n-1, n-2));
x = y = 0.75 * s;
w = -0.4375 * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30) {
s = (y - x) / 2.0;
s = s * s + w;
if (s > 0) {
s = std::sqrt(s);
if (y < x) {
s = -s;
}
s = x - w / ((y - x) / 2.0 + s);
for (int i = low; i <= n; i++) {
H(i, i) -= s;
}
exshift += s;
x = y = w = 0.964;
}
}
iter = iter + 1; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n-2;
while (m >= l) {
z = H(m, m);
r = x - z;
s = y - z;
p = (r * s - w) / H(m+1, m) + H(m, m+1);
q = H(m+1, m+1) - z - r - s;
r = H(m+2, m+1);
s = std::abs(p) + std::abs(q) + std::abs(r);
p = p / s;
q = q / s;
r = r / s;
if (m == l) {
break;
}
if (std::abs(H(m, m-1)) * (std::abs(q) + std::abs(r)) <
eps * (std::abs(p) * (std::abs(H(m-1, m-1)) + std::abs(z) +
std::abs(H(m+1, m+1))))) {
break;
}
m--;
}
for (int i = m+2; i <= n; i++) {
H(i, i-2) = 0.0;
if (i > m+2) {
H(i, i-3) = 0.0;
}
}
// Double QR step involving rows l:n and columns m:n
for (int k = m; k <= n-1; k++) {
bool notlast = (k != n-1);
if (k != m) {
p = H(k, k-1);
q = H(k+1, k-1);
r = (notlast ? H(k+2, k-1) : 0.0);
x = std::abs(p) + std::abs(q) + std::abs(r);
if (x != 0.0) {
p = p / x;
q = q / x;
r = r / x;
}
}
if (x == 0.0) {
break;
}
s = std::sqrt(p * p + q * q + r * r);
if (p < 0) {
s = -s;
}
if (s != 0) {
if (k != m) {
H(k, k-1) = -s * x;
} else if (l != m) {
H(k, k-1) = -H(k, k-1);
}
p = p + s;
x = p / s;
y = q / s;
z = r / s;
q = q / p;
r = r / p;
// Row modification
for (int j = k; j < nn; j++) {
p = H(k, j) + q * H(k+1, j);
if (notlast) {
p = p + r * H(k+2, j);
H(k+2, j) = H(k+2, j) - p * z;
}
H(k, j) = H(k, j) - p * x;
H(k+1, j) = H(k+1, j) - p * y;
}
// Column modification
for (int i = 0; i <= std::min(n, k+3); i++) {
p = x * H(i, k) + y * H(i, k+1);
if (notlast) {
p = p + z * H(i, k+2);
H(i, k+2) = H(i, k+2) - p * r;
}
H(i, k) = H(i, k) - p;
H(i, k+1) = H(i, k+1) - p * q;
}
// Accumulate transformations
for (int i = low; i <= high; i++) {
p = x * V(i, k) + y * V(i, k+1);
if (notlast) {
p = p + z * V(i, k+2);
V(i, k+2) = V(i, k+2) - p * r;
}
V(i, k) = V(i, k) - p;
V(i, k+1) = V(i, k+1) - p * q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0) {
return;
}
for (n = nn-1; n >= 0; n--) {
p = d_[n];
q = e_[n];
// Real vector
if (q == 0) {
int l = n;
H(n, n) = 1.0;
for (int i = n-1; i >= 0; i--) {
w = H(i, i) - p;
r = 0.0;
for (int j = l; j <= n; j++) {
r = r + H(i, j) * H(j, n);
}
if (e_[i] < 0.0) {
z = w;
s = r;
} else {
l = i;
if (e_[i] == 0.0) {
if (w != 0.0) {
H(i, n) = -r / w;
} else {
H(i, n) = -r / (eps * norm);
}
// Solve real equations
} else {
x = H(i, i+1);
y = H(i+1, i);
q = (d_[i] - p) * (d_[i] - p) +e_[i] *e_[i];
t = (x * s - z * r) / q;
H(i, n) = t;
if (std::abs(x) > std::abs(z)) {
H(i+1, n) = (-r - w * t) / x;
} else {
H(i+1, n) = (-s - y * t) / z;
}
}
// Overflow control
t = std::abs(H(i, n));
if ((eps * t) * t > 1) {
for (int j = i; j <= n; j++) {
H(j, n) = H(j, n) / t;
}
}
}
}
// Complex vector
} else if (q < 0) {
int l = n-1;
// Last vector component imaginary so matrix is triangular
if (std::abs(H(n, n-1)) > std::abs(H(n-1, n))) {
H(n-1, n-1) = q / H(n, n-1);
H(n-1, n) = -(H(n, n) - p) / H(n, n-1);
} else {
Real cdivr, cdivi;
cdiv(0.0, -H(n-1, n), H(n-1, n-1)-p, q, &cdivr, &cdivi);
H(n-1, n-1) = cdivr;
H(n-1, n) = cdivi;
}
H(n, n-1) = 0.0;
H(n, n) = 1.0;
for (int i = n-2; i >= 0; i--) {
Real ra, sa, vr, vi;
ra = 0.0;
sa = 0.0;
for (int j = l; j <= n; j++) {
ra = ra + H(i, j) * H(j, n-1);
sa = sa + H(i, j) * H(j, n);
}
w = H(i, i) - p;
if (e_[i] < 0.0) {
z = w;
r = ra;
s = sa;
} else {
l = i;
if (e_[i] == 0) {
Real cdivr, cdivi;
cdiv(-ra, -sa, w, q, &cdivr, &cdivi);
H(i, n-1) = cdivr;
H(i, n) = cdivi;
} else {
Real cdivr, cdivi;
// Solve complex equations
x = H(i, i+1);
y = H(i+1, i);
vr = (d_[i] - p) * (d_[i] - p) +e_[i] *e_[i] - q * q;
vi = (d_[i] - p) * 2.0 * q;
if (vr == 0.0 && vi == 0.0) {
vr = eps * norm * (std::abs(w) + std::abs(q) +
std::abs(x) + std::abs(y) + std::abs(z));
}
cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi, &cdivr, &cdivi);
H(i, n-1) = cdivr;
H(i, n) = cdivi;
if (std::abs(x) > (std::abs(z) + std::abs(q))) {
H(i+1, n-1) = (-ra - w * H(i, n-1) + q * H(i, n)) / x;
H(i+1, n) = (-sa - w * H(i, n) - q * H(i, n-1)) / x;
} else {
cdiv(-r-y*H(i, n-1), -s-y*H(i, n), z, q, &cdivr, &cdivi);
H(i+1, n-1) = cdivr;
H(i+1, n) = cdivi;
}
}
// Overflow control
t = std::max(std::abs(H(i, n-1)), std::abs(H(i, n)));
if ((eps * t) * t > 1) {
for (int j = i; j <= n; j++) {
H(j, n-1) = H(j, n-1) / t;
H(j, n) = H(j, n) / t;
}
}
}
}
}
}
// Vectors of isolated roots
for (int i = 0; i < nn; i++) {
if (i < low || i > high) {
for (int j = i; j < nn; j++) {
V(i, j) = H(i, j);
}
}
}
// Back transformation to get eigenvectors of original matrix
for (int j = nn-1; j >= low; j--) {
for (int i = low; i <= high; i++) {
z = 0.0;
for (int k = low; k <= std::min(j, high); k++) {
z = z + V(i, k) * H(k, j);
}
V(i, j) = z;
}
}
}
template<typename Real>
EigenvalueDecomposition<Real>::EigenvalueDecomposition(const MatrixBase<Real> &A) {
KALDI_ASSERT(A.NumCols() == A.NumRows() && A.NumCols() >= 1);
n_ = A.NumRows();
V_ = new Real[n_*n_];
d_ = new Real[n_];
e_ = new Real[n_];
H_ = NULL;
ort_ = NULL;
if (A.IsSymmetric(0.0)) {
for (int i = 0; i < n_; i++)
for (int j = 0; j < n_; j++)
V(i, j) = A(i, j); // Note that V(i, j) is a member function; A(i, j) is an operator
// of the matrix A.
// Tridiagonalize.
Tred2();
// Diagonalize.
Tql2();
} else {
H_ = new Real[n_*n_];
ort_ = new Real[n_];
for (int i = 0; i < n_; i++)
for (int j = 0; j < n_; j++)
H(i, j) = A(i, j); // as before: H is member function, A(i, j) is operator of matrix.
// Reduce to Hessenberg form.
Orthes();
// Reduce Hessenberg to real Schur form.
Hqr2();
}
}
template<typename Real>
EigenvalueDecomposition<Real>::~EigenvalueDecomposition() {
delete [] d_;
delete [] e_;
delete [] V_;
if (H_) delete [] H_;
if (ort_) delete [] ort_;
}
// see function MatrixBase<Real>::Eig in kaldi-matrix.cc
} // namespace kaldi
#endif // KALDI_MATRIX_JAMA_EIG_H_